1、公众号码:王校长资源站第2课时导数与方程题型一求函数零点个数例1 (2018乌海模拟)已知函数f(x)2a2ln xx2(a0)(1)求函数f(x)的单调区间;(2)讨论函数f(x)在区间(1,e2)上零点的个数(e为自然对数的底数)解(1)f(x)2a2ln xx2,f(x)2x,x0,a0,当0x0,当xa时,f(x)0.f(x)的单调递增区间是(0,a),单调递减区间是(a,)(2)由(1)得f(x)maxf(a)a2(2ln a1)讨论函数f(x)的零点情况如下:当a2(2ln a1)0,即0a时,函数f(x)无零点,在(1,e2)上无零点;当a2(2ln a1)0,即a时,函数f(x
2、)在(0,)内有唯一零点a,而1a0,即a时,由于f(1)10,f(e2)2a2ln(e2)e44a2e4(2ae2)(2ae2),当2ae20,即a时,1ae2,f(e2)时,f(e2)0,而且f()2a2ea2e0,f(1)10,由函数的单调性可知,无论ae2,还是ae2,f(x)在(1,)内有唯一的零点,在(,e2)内没有零点,从而f(x)在(1,e2)内只有一个零点综上所述,当0a时,函数f(x)在区间(1,e2)上无零点;当a或a时,函数f(x)在区间(1,e2)上有一个零点;当a0),由f(x)0,得xe.当x(0,e)时,f(x)0,f(x)在(e,)上单调递增,当xe时,f(x
3、)取得极小值f(e)ln e2,f(x)的极小值为2.(2)由题设g(x)f(x)(x0),令g(x)0,得mx3x(x0)设(x)x3x(x0),则(x)x21(x1)(x1),当x(0,1)时,(x)0,(x)在(0,1)上单调递增;当x(1,)时,(x)时,函数g(x)无零点;当m时,函数g(x)有且只有一个零点;当0m时,函数g(x)无零点;当m或m0时,函数g(x)有且只有一个零点;当0m时,函数g(x)有两个零点题型二根据函数零点情况求参数范围例2 (2018全国)已知函数f(x)xaln x.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:2,令f(x
4、)0,得x或x.当x时,f(x)0.所以f(x)在,上单调递减,在上单调递增(2)证明由(1)知,f(x)存在两个极值点当且仅当a2.由于f(x)的两个极值点x1,x2满足x2ax10,所以x1x21,不妨设x11.由于1a2a2a,所以a2等价于x22ln x20.设函数g(x)x2ln x,由(1)知,g(x)在(0,)上单调递减又g(1)0,从而当x(1,)时,g(x)0.所以x22ln x20,即0),所以h(x)1.所以x在上变化时,h(x),h(x)的变化情况如下:x1(1,e)h(x)0h(x)极小值又h3e2,h(1)4,h(e)e2.且h(e)h42e0.所以h(x)minh
5、(1)4,h(x)maxh3e2,所以实数a的取值范围为40,解得xe2,令f(x)0,解得0x时,f(x)min0,f(x)无零点,当a时,f(x)min0,f(x)有1个零点,当a时,f(x)min0,解得x1,令f(x)0,解得0x1,所以f(x)在(0,1)上单调递减,在(1,)上单调递增(2)F(x)f(x)3,由(1)得x1,x2,满足0x11x2,使得f(x)在(0,x1)上大于0,在(x1,x2)上小于0,在(x2,)上大于0,即F(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,)上单调递增,而F(1)0,x0时,F(x),x时,F(x),画出函数F(x)
6、的草图,如图所示故F(x)在(0,)上的零点有3个3已知函数f(x)ax2(aR),g(x)2ln x,且方程f(x)g(x)在区间,e上有两个不相等的解,求a的取值范围解由已知可得方程a在区间,e上有两个不等解,令(x),由(x)易知,(x)在(,)上为增函数,在(,e)上为减函数,则(x)max(),由于(e),(),(e)()0,所以(e)()所以(x)min(e),如图可知(x)a有两个不相等的解时,需a0)(1)若g(x)m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)f(x)0有两个相异实根解(1)g(x)x22e(x0),当且仅当x时取等号,当xe时,g(x)有最小
7、值2e.要使g(x)m有零点,只需m2e.即当m2e,)时,g(x)m有零点(2)若g(x)f(x)0有两个相异实根,则函数g(x)与f(x)的图象有两个不同的交点如图,作出函数g(x)x(x0)的大致图象f(x)x22exm1(xe)2m1e2,其对称轴为xe,f(x)maxm1e2.若函数f(x)与g(x)的图象有两个交点,则m1e22e,即当me22e1时,g(x)f(x)0有两个相异实根m的取值范围是(e22e1,)5已知函数f(x)(x2)exa(x1)2有两个零点(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1x20,则当x(,1)时,f(x)0,所以f(x
8、)在(,1)内单调递减,在(1,)内单调递增又f(1)e,f(2)a,取b满足b0且b(b2)a(b1)2a0,故f(x)存在两个零点设a0,因此f(x)在(1,)内单调递增又当x1时,f(x)0,所以f(x)不存在两个零点若a1,故当x(1,ln(2a)时,f(x)0.因此f(x)在(1,ln(2a)内单调递减,在(ln(2a),)内单调递增又当x1时,f(x)0,所以f(x)不存在两个零点综上,a的取值范围为(0,)(2)证明不妨设x1x2,由(1)知,x1(,1),x2(1,),2x2(,1),f(x)在(,1)内单调递减,所以x1x2f(2x2),即f(2x2)1时,g(x)1时,g(x)0.从而g(x2)f(2x2)0,故x1x22.6已知函数f(x)(3a)x2ln xa3在上无零点,求实数a的取值范围解当x从0的右侧趋近于0时,f(x),所以f(x)0恒成立,即只需当x时,a3恒成立令h(x)3,x,则h(x),再令m(x)2ln x2,x,则m(x)m64ln 20,所以h(x)0在上恒成立,所以h(x)在上为增函数,所以h(x)h在上恒成立又h3ln 2,所以a3ln 2,故实数a的取值范围是.公众号码:王校长资源站