1、1部部 门门 :杭发公司铸造厂杭发公司铸造厂项目负责人项目负责人 :丁树良丁树良 何帅伟何帅伟 王慧勇王慧勇项项 目目 周周 期期 :2009年年6月月-12月月降低气缸体水套芯磕碰伤率降低气缸体水套芯磕碰伤率2 1.1.项目陈述项目陈述:水套芯是水套芯是影响发动机铸件性能影响发动机铸件性能的关键砂芯,由于其具有薄壁、形状复杂、易变形等特点,因此的关键砂芯,由于其具有薄壁、形状复杂、易变形等特点,因此在生产、运输过程中的磕碰伤就一直成为制约产能和质量的主要瓶颈,对后续的造型、浇注、铸件的在生产、运输过程中的磕碰伤就一直成为制约产能和质量的主要瓶颈,对后续的造型、浇注、铸件的清理、机加工等工序以
2、及铸件质量和由此引起的发动机售后服务等都造成了很大的影响。采取有效手清理、机加工等工序以及铸件质量和由此引起的发动机售后服务等都造成了很大的影响。采取有效手段迅速改进水套芯磕碰伤,对于提升发动机铸件质量具有重要意义。段迅速改进水套芯磕碰伤,对于提升发动机铸件质量具有重要意义。2.项目范围项目范围:3.现状及目标现状及目标:项目授权书项目授权书 项目编号项目编号:项目名称项目名称:部部 门门:杭发公司铸造厂杭发公司铸造厂 绿绿 带带:丁树良丁树良 何帅伟何帅伟 王慧勇王慧勇4.开始日期开始日期:2009年年6月月 结束日期结束日期:2009年年12月月35.内部、外部顾客需求内部、外部顾客需求:
3、在气缸体造型时,经常发现水套芯有裂纹,涂料被部分擦落掉,严重者部分地方已擦落到砂子甚至导致砂芯的报废等磕碰伤,必须经现场修补才能使用。是延误生产、引起铸件发生铁夹砂、粘砂、组织疏松、表面光洁度降低等缺陷的一个原因,影响后道工序直通率的主要原因。清理气缸体时,经常发现气缸体水套底部有铁夹砂缺陷存在,需多次返工才能清理干净,清理不掉的将导致报废,加重了清理工人的劳动强度以及人力、动力、机器设备等的浪费。对公司的铸件质量、整体的发动机质量、产品的售后服务和声誉等产生重要影响。项目授权书项目授权书6.项目预计收益项目预计收益:水套芯的磕碰伤率由破损率(12.5%)和缺陷率(87.5%)组成,破损直接导
4、致水套芯的报废,有缺陷的水套芯必须在造型前进行现场修补方可使用,但可能会引起铸造缺陷,降低铸件的铸造质量。A、硬性收益硬性收益:通过铸造厂07、08年及09年15月份的气缸体造型总数223254只,每月平均25个工作日测算出,日均需生产水套芯352个,气缸体水套芯的破损率由12.5%降低至2%,减少水套芯的生产数为:352(12.5-2)%251211088(个/年)。每个水套芯的平均生产成本为32.58元。每年节约成本约:1108832.58361247.04元。根据07、08年统计,由于水套芯铁夹砂造成的气缸体报废数为813个,平均每年有407个,气缸体铸件单重268Kg,气缸体商品价10
5、900元/吨,扣除可回收材料费4500元/吨,则:4070.268(10900-4500)=698086.4元。故每年可节约:361247.04+698086.4=1059333.44元。B、软性收益软性收益:气缸体水套芯的缺陷率由87.5%降低至1%,可明显提高水套芯在造型时的一次完好率,减少砂芯的现场修补及后续的造型、浇注、清理等工序的工时损失和动力、刀具、机器设备耗损等的浪费;对后面各工序的连续性生产提供了基本保障;同时,铸件由于水套芯的磕碰伤所引起的铁夹砂、粘砂、组织疏松等缺陷可得到显著性的改善,对发动机的质量、公司的产品声誉、售后服务等都会带来巨大的无形收益。7.团队成员:团队成员:
6、4D-1:项目选定项目选定D-2:与战略关系与战略关系D-3:顾客及顾客及CTQD-4:项目范围项目范围D-5:Y及缺陷定义及缺陷定义D-6:基线及目标陈述基线及目标陈述D-7:效果及成本预算效果及成本预算D-8:人力组织人力组织D-9:推进计划推进计划D 阶段目录阶段目录I CAM 5D-1:项目选定项目选定 根据公司反馈,5月31日,在我公司售后服务处,连续发生多起因气缸体水道有铸砂将水箱堵死,水箱散热效果差,导致发动机高温而要求更换发动机的严重事故,引起公司及分厂领导的高度重视:更换的发动机编号及客户追偿清单王总在 现 场给分厂 领 导的短信I CAM 6制定制定对策对策D-1:项目选定
7、项目选定 铸造厂领导及时组织相关部门研究分析问题,决定成立项目改铸造厂领导及时组织相关部门研究分析问题,决定成立项目改善小组,尽最大努力减少铸件的粘砂等缺陷善小组,尽最大努力减少铸件的粘砂等缺陷。I CAM 7 经多方研究及论证,认为水套部位残留余砂极有可能是有磕碰伤的水套芯经多方研究及论证,认为水套部位残留余砂极有可能是有磕碰伤的水套芯流入型腔浇注后造成的粘砂,在机加工工部没有清洗干净而导致的(铸造没有流入型腔浇注后造成的粘砂,在机加工工部没有清洗干净而导致的(铸造没有铸件内腔清洗手段)。由于受到铸件内腔清洗手段)。由于受到传统工艺传统工艺及生产条件的限制,水套芯在生产及及生产条件的限制,水
8、套芯在生产及转运过程中一直存在较为普遍的磕碰伤状况。因此项目组决定突破传统工艺和转运过程中一直存在较为普遍的磕碰伤状况。因此项目组决定突破传统工艺和思维限制,运用六西格玛工具和方法论有效降低水套芯的磕碰伤难题。思维限制,运用六西格玛工具和方法论有效降低水套芯的磕碰伤难题。D-1:项目选定项目选定存在磕存在磕碰伤的碰伤的水套芯水套芯I CAM 8D-2:与战略联系与战略联系公司经营战略公司经营战略 在产能不断在产能不断扩大的同时,不扩大的同时,不断提高发动机的断提高发动机的质量,提升公司质量,提升公司的行业竟争力。的行业竟争力。部门经营战略部门经营战略GB 项目项目 SINO TRUK SINO
9、 TRUK 一步到位一步到位 步步到位步步到位市场需求市场需求 我国经济我国经济的持续高速发的持续高速发展展,以及国家的以及国家的四万亿基础设四万亿基础设施建设投入,施建设投入,使得市场对重使得市场对重型车的需求持型车的需求持续增长,重型续增长,重型发动机的市场发动机的市场供不应求。供不应求。为公司提供为公司提供优质的气缸体铸优质的气缸体铸件。件。气缸体水套芯气缸体水套芯磕碰伤率的降低,磕碰伤率的降低,可以有效减少铸造可以有效减少铸造缺陷,提高气缸体缺陷,提高气缸体铸件质量。铸件质量。I CAM 9D-3:顾客与顾客与CTQ造型工序造型工序内部顾客内部顾客大件线造型时,发现水套芯普遍存大件线造
10、型时,发现水套芯普遍存在因磕碰引起的涂料损伤等缺陷,在因磕碰引起的涂料损伤等缺陷,需现场修补才能使用,不但加重造需现场修补才能使用,不但加重造型工的劳动强度以及修补工时、材型工的劳动强度以及修补工时、材料等浪费,还影响生产节拍。料等浪费,还影响生产节拍。清理工序清理工序清理气缸体铸件时,经常发现气缸清理气缸体铸件时,经常发现气缸体水套底部有夹砂缺陷存在,需多体水套底部有夹砂缺陷存在,需多次返工才能清理干净,否则将导致次返工才能清理干净,否则将导致报废,加重了清理工的劳动强度以报废,加重了清理工的劳动强度以及人力、能源、机器设备等的浪费。及人力、能源、机器设备等的浪费。因磕碰引起的涂料损伤响应部
11、位的夹砂缺陷外部顾客外部顾客I CAM 10D-3:顾客与顾客与CTQ项目项目CTQ:综上所述综上所述:气缸体水套芯的磕碰伤对内、外顾客的影响都很大,气缸体水套芯的磕碰伤对内、外顾客的影响都很大,通过降低磕碰伤率,可显著提高铸件质量。通过降低磕碰伤率,可显著提高铸件质量。I CAM 11D-4:项目范围项目范围宏观流程图宏观流程图原砂原砂树脂树脂与项目密切相关的流程与项目密切相关的流程流程均在项目组可控范围内流程均在项目组可控范围内I CAM 12D-5:Y及缺陷定义及缺陷定义缺陷缺陷定义定义Y定义定义小小Y定义定义I CAM 13D-6:基线及目标陈述基线及目标陈述BaselineGoalE
12、ntitlement目标目标:破损率破损率 2%缺陷率缺陷率 1%潜在最佳值潜在最佳值:破损率破损率 1%缺陷率缺陷率 0.5%基线基线:破损率破损率 12.5%缺陷率缺陷率 87.5%(100-3)/(100-1.5)10098.48不不改改善善改善达改善达成目标成目标I CAM 14D-7:效果及成本预算效果及成本预算共节约有效金额共节约有效金额106万元万元RMB 通过铸造厂通过铸造厂07、08年及年及09年年15月份的气月份的气缸体造型总数缸体造型总数223254只,每月平均只,每月平均25个工作日个工作日测测算出,日均需生产水套芯算出,日均需生产水套芯352个,气缸体水套芯个,气缸体
13、水套芯的破损率由的破损率由12.5%降低至降低至2%,减少水套芯的生,减少水套芯的生产数为:产数为:352(12.5-2)%251211088(个(个/年)。每个水套芯的生产成本为年)。每个水套芯的生产成本为32.58元。元。每年节约成本约:每年节约成本约:1108832.58361247.04元。元。根据根据07、08年统计,由于水套芯铁夹砂造成的气年统计,由于水套芯铁夹砂造成的气缸体报废数为缸体报废数为813813个,平均每年有个,平均每年有407407个,气缸体个,气缸体铸件单重铸件单重268Kg,气缸体商品价,气缸体商品价10900元元/吨,扣吨,扣除可回收材料费除可回收材料费4500
14、元元/吨,则:吨,则:4070.268(10900-4500)=698086.4元。元。故每年可节约:故每年可节约:361247.04+698086.4=1059333.44元。元。气缸体水套芯的缺陷率由气缸体水套芯的缺陷率由87.5%降低至降低至1%,可明显提高水套芯在造型时的完好率,可明显提高水套芯在造型时的完好率,减少砂芯的现场修补及后续的造型、浇,减少砂芯的现场修补及后续的造型、浇注、清理等工序的工时损失和动力、刀具注、清理等工序的工时损失和动力、刀具、机器设备耗损等的浪费;对后面各工序、机器设备耗损等的浪费;对后面各工序的连续性生产提供了基本保障;同时,铸的连续性生产提供了基本保障;
15、同时,铸件由于水套芯的磕碰伤所引起的夹砂、粘件由于水套芯的磕碰伤所引起的夹砂、粘砂、组织疏松等缺陷可得到显著性的改善砂、组织疏松等缺陷可得到显著性的改善,对发动机的质量、公司的产品声誉、售,对发动机的质量、公司的产品声誉、售后 服 务 等 都 会 带 来 巨 大 的 无 形 收 益。后 服 务 等 都 会 带 来 巨 大 的 无 形 收 益。I CAM 15D-8:人力组织人力组织Champion:刘念煌刘念煌 丁树良丁树良 GB:何帅伟何帅伟 王慧勇王慧勇指导指导:成成 伟伟部门部门:技术技术科科核心人员核心人员:王伟春王伟春部门部门:质保科质保科核心人员核心人员:王慧勇王慧勇部门部门:铸一
16、车间铸一车间核心人员核心人员:江晓明江晓明职责职责:组织工艺组织工艺 方案的设方案的设 计、实施计、实施 部门部门:铸一车间铸一车间核心人员核心人员:丁树良丁树良贡献率贡献率:80%贡献率贡献率:80%贡献率贡献率:40%贡献率贡献率:40%职责职责:工艺方案工艺方案 设计、论设计、论 证证 职责职责:开展实验开展实验 收集数据收集数据职责职责:开展实验开展实验 收集数据收集数据部门部门:技术技术科科核心人员核心人员:何帅伟何帅伟贡献率贡献率:80%职责职责:工艺方案工艺方案 设计、论设计、论 证证评审评审:陈建华陈建华部门部门:铸一车间铸一车间核心人员核心人员:彭国江彭国江贡献率贡献率:40
17、%职责职责:开展实验开展实验 收集数据收集数据I CAM 16D-8:人力组织人力组织项目组成员合影项目组成员合影I CAM 17D-9:推进计划推进计划I CAM 项目已完成项目已完成18M 阶段目录阶段目录M-1:Y的测量系统分析的测量系统分析M-2:Y的流程能力分析的流程能力分析M-3:鱼骨图鱼骨图M-4:C&E矩阵矩阵M-5:失效模式分析失效模式分析(FMEA)M-6:快速改善措施快速改善措施M-7:快速改善后的快速改善后的 2nd FMEAM-8:M 阶段小结阶段小结19M-1:Y的测量系统分析的测量系统分析(离散型离散型)结论结论:本测量系统可信赖。本测量系统可信赖。检验员自身 评
18、估一致性检验员 验数 符数 百分比 95%置信区间江小明 30 30 100.00 (90.50,100.00)彭国江 30 30 100.00 (90.50,100.00)王慧勇 30 30 100.00 (90.50,100.00)每个检验员与标准 评估一致性检验员 验数 符数 百分比 95%置信区间江小明 30 30 100.00 (90.50,100.00)彭国江 30 30 100.00 (90.50,100.00)王慧勇 30 30 100.00 (90.50,100.00)检验员之间 评估一致性验数 符数 百分比 95%置信区间 30 30 100.00 (90.50,100.0
19、0 所有检验员与标准 评估一致性验数 符数 百分比 95%置信区间 30 30 100.00 (90.50,100.00)测量内容:水套芯的破损与有缺陷(离散数据)样本数量:共30个 测量环境:铸造厂测 量 者:王慧勇、江晓明、彭国江 记 录 者:何帅伟测量方法:目测:对于30个水套芯,其中有3件破损其余有缺陷的样本进行测量系统分析。808020M-1:Y的测量系统分析的测量系统分析(连续型连续型)量具量具 R&R 研究变异%研究变%公差来源 标准差(SD)(6*SD)异(%SV)(SV/Toler)合计量具 R&R 0.0052226 0.031335 10.95 7.18 重复性 0.00
20、52226 0.031335 10.95 7.18 再现性 0.0000000 0.000000 0.00 0.00 测量者 0.0000000 0.000000 0.00 0.00部件间 0.0473892 0.284335 99.40 65.15合计变异 0.0476761 0.286057 100.00 65.54可区分的类别数=12测量内容:气缸体水套芯紧实率测试(连续数据)样本数量:共8个测量机器:台秤测 量 者:王慧勇、江晓明、彭国江 记 录 者:何帅伟测量方法:用台秤分别对8个样品测试两次并记录结果。判定基准:P/TV30、%P/T 30、明显分类数551、P/TV=10.95%
21、302、P/T=7.18%302、明显分类数=125 结论结论:本测量本测量系统可信赖系统可信赖30%21M-1:Y的测量系统分析的测量系统分析(连续型连续型)量具量具 R&R 研究变异%研究变%公差来源 标准差(SD)(6*SD)异(%SV)(SV/Toler)合计量具 R&R 0.0071285 0.042771 23.99 5.55重复性 0.0070760 0.042456 23.82 5.51再现性 0.0008640 0.005184 2.91 0.67测量者 0.0008640 0.005184 2.91 0.67部件间 0.0288406 0.173043 97.08 22.4
22、7合计变异 0.0297085 0.178251 100.00 23.15可区分的类别数=5测量内容:气缸体冷芯盒水套芯常温强度测试(连续数据)样本数量:共10个测量机器:液压式万能强度试验仪测 量 者:沈林粉、陈红铭、白丽娜 记 录 者:江贤波测量方法:用液压式万能强度仪分别对10个样品测试两次并记录结果判定基准:P/TV30、%P/T 30、明显分类数530%51、P/TV=23.99%302、P/T=5.55%302、明显分类数=5 5 结论结论:本测量本测量系统可信赖系统可信赖22M-1:Y的测量系统分析的测量系统分析(离散型离散型)结论结论:本测量系统可信赖。本测量系统可信赖。检验员
23、自身 评估一致性检验员 验数 符数 百分比 95%置信区间江小明 30 30 100.00 (90.50,100.00)彭国江 30 30 100.00 (90.50,100.00)王慧勇 30 30 100.00 (90.50,100.00)每个检验员与标准 评估一致性检验员 验数 符数 百分比 95%置信区间江小明 30 30 100.00 (90.50,100.00)彭国江 30 30 100.00 (90.50,100.00)王慧勇 30 30 100.00 (90.50,100.00)检验员之间 评估一致性验数 符数 百分比 95%置信区间 30 30 100.00 (90.50,1
24、00.00 所有检验员与标准 评估一致性验数 符数 百分比 95%置信区间 30 30 100.00 (90.50,100.00)测量内容:气缸体水套芯转运的平稳度测试(离散数据)样本数量:共30个 测量环境:铸造厂测 量 者:王慧勇、江晓明、彭国江 记 录 者:何帅伟测量方法:目测:对于30车水套芯的转运,当转运后每车的报废数1或者发生涂料等擦落的 水套芯数50%即为平稳度好的样本进行测量系统分析。808023M-1:Y的测量系统分析的测量系统分析(离散型离散型)结论结论:本测量系统可信赖。本测量系统可信赖。检验员自身 评估一致性检验员 验数 符数 百分比 95%置信区间江小明 30 30
25、100.00 (90.50,100.00)彭国江 30 30 100.00 (90.50,100.00)王慧勇 30 30 100.00 (90.50,100.00)每个检验员与标准 评估一致性检验员 验数 符数 百分比 95%置信区间江小明 30 30 100.00 (90.50,100.00)彭国江 30 30 100.00 (90.50,100.00)王慧勇 30 30 100.00 (90.50,100.00)检验员之间 评估一致性验数 符数 百分比 95%置信区间 30 30 100.00 (90.50,100.00 所有检验员与标准 评估一致性验数 符数 百分比 95%置信区间 3
26、0 30 100.00 (90.50,100.00)测量内容:气缸体水套芯涂料层的抗擦落强度测试(离散数据)样本数量:共30个 测量环境:铸造厂测 量 者:王慧勇、江晓明、彭国江 记 录 者:何帅伟测量方法:目测:对于30个水套芯,其中有3个抗擦落强度差的样本进行测量系统分析。808024M-2:Y的流程能力分析的流程能力分析(离散型离散型)数据收集说明数据收集说明:2009年年5月份,记录每天生产的水套芯数量与发生磕碰伤的水套芯数量,并对该期间月份,记录每天生产的水套芯数量与发生磕碰伤的水套芯数量,并对该期间流程能力作分析。流程能力作分析。DPU=1,得出该流程的短期Sigma水平为1.16
27、,还有很大的提升空间。1.000025M-3:鱼骨图鱼骨图取放砂芯 C砂芯修补疏松 C砂芯清理浮砂 C砂芯浸涂 C质量意识 C钻孔时用力均匀性 C砂芯小车减震 N烘房温度均匀性 N铲车防雨措施 C砂芯小车进出烘房速度 C 厂区道路 N车间道路 N雨天转运 N砂芯浸涂后及时进烘房 N砂芯摆放方式 C砂芯摆放量 C烘干时间控制 C烘干温度控制 C砂芯磨平凸起 C树脂加入量 C涂料比重 C涂料悬浮性 C砂芯工装 C铲车速度 C铲车搬运砂芯 C烘房空气的循环性 N射砂压力 C射砂时间 C树脂两组分比例 C混砂时间 C26M-4:C&E矩阵矩阵27M-4:C&E矩阵矩阵28M-4:C&E矩阵矩阵29M-
28、4:C&E矩阵矩阵通 过 柏 拉通 过 柏 拉图 我 们 找图 我 们 找出 了 影 响出 了 影 响8 0%的 重的 重要因子要因子30M-5:失效模式分析失效模式分析(FMEA)采用采用FMEA对对上述因子上述因子进行细化分进行细化分析析31M-5:失效模式分析失效模式分析(FMEA)32M-5:失效模式分析失效模式分析(FMEA)33M-5:失效模式分析失效模式分析(FMEA)34M-6:快速改善措施快速改善措施 通过通过C&EC&E矩阵和矩阵和FMEAFMEA分析,我们找出了对水套芯的磕碰伤具有显著分析,我们找出了对水套芯的磕碰伤具有显著性影响的因子。这些因子大部分为我们现阶段无法控制
29、的,通过技术科、性影响的因子。这些因子大部分为我们现阶段无法控制的,通过技术科、质保科、装备科和生产车间的讨论研究后,我们决定对水套芯的生产流质保科、装备科和生产车间的讨论研究后,我们决定对水套芯的生产流程进行程进行再造再造,将不可控因子转化为可控因子、或降低其风险顺序数,将不可控因子转化为可控因子、或降低其风险顺序数(RPNRPN)。以下为新的生产流程(在)。以下为新的生产流程(在6 6月月2525日前已经由铸一车间负责改造日前已经由铸一车间负责改造完成):完成):35M-6:快速改善措施快速改善措施36M-6:快速改善措施快速改善措施37M-6:快速改善措施快速改善措施38M-6:快速改善
30、措施快速改善措施流程再造前的水套芯流程再造前的水套芯流程再造前后的水套芯表面质量对比流程再造后的水套芯流程再造后的水套芯39M-6:快速改善措施快速改善措施流程再造前后的因子转化流程再造前后的因子转化转化转化40M-7:快速改善后的快速改善后的 2nd FMEA41M-7:快速改善后的快速改善后的 2nd FMEA42M-7:快速改善后的快速改善后的 2nd FMEA43结论结论:通过柏拉图,我们找到了影响通过柏拉图,我们找到了影响80%的关键因子,的关键因子,将此将此4个关键因个关键因 子确定为阶段分析验证的项目输入。子确定为阶段分析验证的项目输入。M-7:快速改善后的快速改善后的 2nd
31、FMEA44M-8:M阶段小结阶段小结通过两次通过两次FMEA,找出了,找出了4个仍然比较重要个仍然比较重要的输入因子的输入因子它们对它们对Y是否真的有影响,我们将在下一阶段进行是否真的有影响,我们将在下一阶段进行进一步的分析和验证。进一步的分析和验证。X1:涂料比重X2:烘干温度X3:烘干时间X4:浸涂后进表干炉的时间45通过快速改善的流程再造,通过快速改善的流程再造,Y的现状如下:的现状如下:M-8:M阶段小结阶段小结DPU=0.0558,得出该流程的短期Sigma水平为3.1,Sigma水平有很大提升。0.0558至8月底,水套芯磕碰伤率已降至5.4846A 阶段目录阶段目录A-1:A-
32、1:数据收集计划数据收集计划A-2:A-2:涂料比重因子分析涂料比重因子分析A-3:A-3:烘干温度与烘干时间因子分析烘干温度与烘干时间因子分析A-4:A-4:浸涂后进表干炉的时间因子分析浸涂后进表干炉的时间因子分析A-5:A-5:快速改善快速改善A-6:AA-6:A阶段总结阶段总结47A-1:数据收集计划数据收集计划分析用数据分析用数据 收集计划收集计划项目名称降低气缸体水套芯的磕碰伤降低气缸体水套芯的磕碰伤GB 丁树良丁树良何帅伟何帅伟王慧勇王慧勇48 结论结论:P=0.007,小于,小于 0.05 拒绝拒绝 H0,即:涂料比重对水套芯磕碰,即:涂料比重对水套芯磕碰 伤数有显著性影响。伤数
33、有显著性影响。卡方检验卡方检验:合格数合格数,磕碰伤数磕碰伤数 在观测计数下方给出的是期望计数在期望计数下方给出的是卡方贡献 合格数 磕碰伤数 合计 1 276 24 300 279.00 21.00 0.032 0.429 2 290 10 300 279.00 21.00 0.434 5.762 3 271 29 300 279.00 21.00 0.229 3.048合计 837 63 900卡方=9.933,DF=2,P 值=0.007 A-2:涂料比重因子分析涂料比重因子分析采用卡方检验:H0:水套芯磕碰伤数与涂料比重无关 P1=P2H1:水套芯磕碰伤数与涂料比重有关 P1P249A
34、-3:烘干温度与烘干时间因子分析烘干温度与烘干时间因子分析通过将烘干温度(160、180、200)与烘干时间(40、60、80min)进行组合,收集在不同组合下水套芯的磕碰伤数量,作出多变异图。结论结论:烘干温度、烘干温度、烘干时间及其交烘干时间及其交互作用对水套芯互作用对水套芯磕碰伤数影响显磕碰伤数影响显著。著。50采用双因子方差分析检验:H0:水套芯磕碰伤数与烘干时间无关 P1=P2H1:水套芯磕碰伤数与烘干时间有关 P1P2 双因子方差分析双因子方差分析:磕碰伤数磕碰伤数 与与 温度温度,时间时间 来源 自由度 SS MS F P温度 2 28.794 14.3968 37.27 0.0
35、00时间 2 8.794 4.3968 11.38 0.000交互作用 4 56.635 14.1587 36.66 0.000误差 54 20.857 0.3862合计 62 115.079S=0.6215 R-Sq=81.88%R-Sq(调整)=79.19%结论:结论:P=0.0000.05,拒绝,拒绝H0。即烘干温度、烘干时间及其交互作。即烘干温度、烘干时间及其交互作 用对水套芯磕碰伤数有显著性影响。用对水套芯磕碰伤数有显著性影响。A-3:烘干温度与烘干时间因子分析烘干温度与烘干时间因子分析51单因子方差分析单因子方差分析:烘干后砂芯强度烘干后砂芯强度 与与 浸涂后进表干炉时间浸涂后进表
36、干炉时间 来源 自由度 SS MS F P浸涂后放置时间 3 1.49907 0.49969 463.27 0.000误差 36 0.03883 0.00108合计 39 1.53790S=0.03284 R-Sq=97.48%R-Sq(调整)=97.26%结论结论:P=0.000小于小于 0.05 拒绝拒绝 H0,即,即:浸涂后进表干炉浸涂后进表干炉 时间对烘时间对烘 干后砂芯强度有显著影响。干后砂芯强度有显著影响。A-4:浸涂后进表干炉时间因子分析浸涂后进表干炉时间因子分析采用单因子方差分析检验:H0:烘干后砂芯强度与浸涂后进表干炉时间无关 P1=P2H1:烘干后砂芯强度与浸涂后进表干炉时
37、间无关 P1P2 52A-4:浸涂后进表干炉时间因子分析浸涂后进表干炉时间因子分析 结论结论:浸涂后进表干炉的时间为零时,烘干后的砂芯强度最高。即浸浸涂后进表干炉的时间为零时,烘干后的砂芯强度最高。即浸 涂后放置时间越短越好。涂后放置时间越短越好。53A-5:快速改善快速改善 通过分析,发现浸涂后进表干炉的时间为零时,烘干后的砂芯强度最高。即浸涂后放置时间越短越好,而我们新的流程就是在这样的条件下生产的,在老的流程下这个条件是不可能得到改善的。这也从一方面证明了我们的流程再造是合理的。我们马上对其进行工艺控制,并实施标准化。54A-6:A A阶段总结阶段总结 通过A阶段的验证与分析,除对浸涂后
38、进表干炉的时间做了快速改善外,基本确定了涂料比重、烘干温度和烘干时间3个因子是气缸体水套芯磕碰伤的关键因子。至9月底,水套芯磕碰伤率已降至4.03过程受控,过程受控,趋于好转。趋于好转。55D P U=0.0 4 0 7,得 出 该 流 程 的 短 期 S i g m a 水 平 为 3.2 5。0.0407A-6:A A阶段总结阶段总结56I-1:I I-1:I 阶段改善计划阶段改善计划I-2:I-2:烘干温度和烘干时间因子分析烘干温度和烘干时间因子分析I-3:I-3:响应曲面设计响应曲面设计I-4:I-4:涂料比重单因子试验涂料比重单因子试验I-5:I I-5:I 阶段小结阶段小结 I 阶
39、段目录阶段目录57 通过A阶段的验证与因子分析,确定了涂料比重、烘干温度和烘干时间3个因子是导致气缸体水套芯产生磕碰伤的关键因子。根据铸造常识:将烘干温度和烘干时间一对因子进行DOE,输出变量为砂芯灼减量;对于涂料比重进行单因子试验以找出最佳的参数范围。I-1:I阶段改善计划阶段改善计划58I-2:烘干温度和烘干时间因子分析烘干温度和烘干时间因子分析(DOE)59I-2:烘干温度和烘干时间因子分析烘干温度和烘干时间因子分析(DOE)60拟合因子拟合因子:砂芯灼减量砂芯灼减量 与与 烘干温度烘干温度,烘干时间烘干时间 砂芯灼减量 的效应和系数的估计(已编码单位)项 效应 系数 系数标准误 T P
40、常量 0.799909 0.01701 47.04 0.000烘干温度 0.015750 0.007875 0.01994 0.39 0.705烘干时间 0.077250 0.038625 0.01994 1.94 0.094烘干温度*烘干时间 -0.009750 -0.004875 0.01994 -0.24 0.814S=0.0564036 PRESS=0.0408980R-Sq=36.17%R-Sq(预测)=0.00%R-Sq(调整)=8.82%对于 砂芯灼减量 方差分析(已编码单位)来源 自由度 Seq SS Adj SS Adj MS F P主效应 2 0.0124313 0.012
41、4313 0.0062156 1.95 0.2122因子交互作用 1 0.0001901 0.0001901 0.0001901 0.06 0.814残差误差 7 0.0222695 0.0222695 0.0031814 弯曲 1 0.0222384 0.0222384 0.0222384 4281.18 0.000 纯误差 6 0.0000312 0.0000312 0.0000052合计 10 0.0348909P0.05失拟不显著失拟不显著模型总效果显著模型总效果显著因子影响显著因子影响显著65I-3:响应曲面设计(响应曲面设计(RSM)结论:结论:通过响应曲面通过响应曲面设计和工艺参
42、设计和工艺参数优化,我们数优化,我们得到:得到:烘干温度为烘干温度为184,烘干烘干时间为时间为63min时,砂芯灼减时,砂芯灼减量达到最大值量达到最大值0.8789kg,此此条件有利于减条件有利于减少水套芯的磕少水套芯的磕碰伤率。碰伤率。66I-3:响应曲面设计(响应曲面设计(RSM)使用 砂芯灼减量 模型的新设计点数的预测响应点 拟合值 拟合值标准误 95%置信区间 95%预测区间 1 0.878890 0.0010615 (0.876380,0.881400)(0.872688,0.885092)结论:通过点预测与区间预测,我们得到:烘干温度为18010,烘干时间为6010min时,砂芯
43、灼减量基本达到0.84kg以上,满足我们的工艺要求,可以有效的减少水套芯的磕碰伤率。图中所示值也在我们可接受范围之内。白色区白色区域为目域为目标范围标范围67I-3:响应曲面设计(响应曲面设计(RSM)结论:利用新的烘干温度和烘干时间工艺对水套芯进行烘干,水套芯的磕碰伤率明显降低达到了目标值。说明新的工艺范围是有效的。68I-4:涂料比重单因子试验(涂料比重单因子试验(OFAT)根据烘干温度和烘干时间的响应曲面设计优化分析结果,烘干温度184,烘干时间63min的条件下,取涂料比重在1.3-1.6,经烘干转运,统计发生磕碰伤的水套芯数数据如下:69I-5:I阶段小结阶段小结 在在I I阶段,通
44、过对烘干温度与烘干时间的阶段,通过对烘干温度与烘干时间的DOE、RSM试验试验分析,得到烘干温度和烘干时间的优化分析,得到烘干温度和烘干时间的优化值(值(184/63min),涂料比重单因子回归分析得到优化数值(涂料比重单因子回归分析得到优化数值(1.45)。通过点预测)。通过点预测与区间预测以及现场的生产情况,我们分别得到这三个因子的与区间预测以及现场的生产情况,我们分别得到这三个因子的工艺范围工艺范围:烘干温度:烘干温度:18010 烘干时间:烘干时间:60min10min 涂料比重:涂料比重:1.40-1.50 在在C阶段,我们将把上述结果全面应用到实际生产中并加阶段,我们将把上述结果全
45、面应用到实际生产中并加以标准化控制。以标准化控制。70I-5:I阶段小结阶段小结至至10月底,月底,水套芯磕碰水套芯磕碰伤率已降至伤率已降至2.66过程受控,过程受控,趋于好转。趋于好转。71D P U=0.0 2 6 5,得 出 该 流 程 的 短 期 S i g m a 水 平 为 3.4 4。0.0265I-5:I阶段小结阶段小结72C-1:C-1:控制计划控制计划C-2:C-2:文件标准化文件标准化C-3:C-3:控制计划及作业指导书宣贯控制计划及作业指导书宣贯C-4:SPCC-4:SPC控制图控制图C-5:C-5:项目收益项目收益C-6:C-6:项目总结项目总结 C 阶段目录阶段目录
46、73C-1:控制计划控制计划74C-1:控制计划控制计划75C-1:控制计划控制计划76C-1:控制计划控制计划77C-2:文件标准化文件标准化78C-2:文件标准化文件标准化修改或新发的修改或新发的作业指导书作业指导书79C-3:控制计划及作业指导书宣贯控制计划及作业指导书宣贯对控制计划和作业指导书的更新内容进行现场培训。对控制计划和作业指导书的更新内容进行现场培训。80我们对项目关键参数涂料比重进行了统计过程控制我们对项目关键参数涂料比重进行了统计过程控制涂料比重参数统计受控。涂料比重参数统计受控。C-4:SPC控制图控制图81C-4:SPC控制图控制图对水套芯磕碰伤数进行统计过程控制对水
47、套芯磕碰伤数进行统计过程控制至11月底,水套芯磕碰伤率已降至1.80 磕碰伤数磕碰伤数数据受控数据受控82C-3:SPC控制图控制图改善前后流程能力分析改善前后流程能力分析1.00000.0178结论结论:改善前后,汽缸体水套芯的磕碰伤数显著降低,过程能力显著提升改善前后,汽缸体水套芯的磕碰伤数显著降低,过程能力显著提升83C-4:项目收益项目收益A:硬性收益硬性收益 按铸造厂日均需生产水套芯按铸造厂日均需生产水套芯352个,气缸体水套芯的破损率由个,气缸体水套芯的破损率由12.5%降低至降低至1.3%,每个水套,每个水套芯的平均生产成本为芯的平均生产成本为32.58元。每年节约成本约:元。每
48、年节约成本约:352(12.5-1.3)%2512 32.58385330.176元。水套芯铁夹砂造成的气缸体报废数平均每年由元。水套芯铁夹砂造成的气缸体报废数平均每年由407407个降到个降到9 9个,气缸体铸件单重个,气缸体铸件单重268Kg,商品价,商品价10900元元/吨,扣除可回收材料费吨,扣除可回收材料费4500元元/吨,则:吨,则:(407-9)0.268(10900-4500)=682649.6元。元。故每年可节约:故每年可节约:385330.176+682649.6=1067979.776元。元。B:软性收益软性收益 气缸体水套芯的缺陷率由气缸体水套芯的缺陷率由87.5%降低
49、至降低至0.5%,可明显提高水套芯在造型时的完好率,减少,可明显提高水套芯在造型时的完好率,减少砂芯的现场修补及后续的造型、浇注、清理等工序的工时损失和动力、刀具、机器设备耗损等砂芯的现场修补及后续的造型、浇注、清理等工序的工时损失和动力、刀具、机器设备耗损等的浪费;对后面各工序的连续性生产提供了基本保障;的浪费;对后面各工序的连续性生产提供了基本保障;同时,铸件由于水套芯的磕碰伤所引起的夹砂、粘砂同时,铸件由于水套芯的磕碰伤所引起的夹砂、粘砂、组织疏松等缺陷可得到显著性的改善,对发动机的、组织疏松等缺陷可得到显著性的改善,对发动机的质量、公司的产品声誉、售后服务等都会带来巨大的质量、公司的产
50、品声誉、售后服务等都会带来巨大的无形收益。无形收益。每年节约有形每年节约有形金额达金额达106万元万元84C-5:项目总结项目总结这次这次6 6培训,通过边学习培训,通过边学习,边做项目,在项目组成员的共同努力边做项目,在项目组成员的共同努力下下,我们顺利的完成了该项目,并为企业带来了可观的经济效益。我们顺利的完成了该项目,并为企业带来了可观的经济效益。通过六西格玛学习,基本掌握了实验设计、通过六西格玛学习,基本掌握了实验设计、FEMA分析、假设检分析、假设检验、方差分析、回归分析、统计过程控制(验、方差分析、回归分析、统计过程控制(SPC)等科学的质量)等科学的质量改进方法,掌握了一种有效的