1、.1.2蛋白质的结构与功能蛋白质的结构与功能第一章第一章Structure and Function of Protein.3n什么是蛋白质什么是蛋白质?蛋白质蛋白质(protein)是由许多氨基酸是由许多氨基酸(amino acids)通过肽键通过肽键(peptide bond)相连相连形成的高分子含氮化合物。形成的高分子含氮化合物。.4n蛋白质研究的历史蛋白质研究的历史18331833年年,PayenPayen和和PersozPersoz分离出淀粉酶。分离出淀粉酶。18381838年年,荷兰科学家,荷兰科学家 G.J.MulderG.J.Mulder引入引入“protein”protein
2、”(源自希腊字(源自希腊字proteiosproteios,意为,意为primaryprimary)一词)一词 18641864年年,Hoppe-SeylerHoppe-Seyler从血液分离出血红蛋白,并将从血液分离出血红蛋白,并将其制成结晶。其制成结晶。1919世纪末世纪末,FischerFischer证明蛋白质是由氨基酸组成的,证明蛋白质是由氨基酸组成的,并将氨基酸合成了多种短肽并将氨基酸合成了多种短肽 。.519511951年年,PaulingPauling采用采用X X(射)线晶体衍射发现了蛋白(射)线晶体衍射发现了蛋白质的二级结构质的二级结构-螺旋螺旋(-helix)(-helix
3、)。19531953年年,Frederick SangerFrederick Sanger完成胰岛素一级序列测定。完成胰岛素一级序列测定。19621962年年,John KendrewJohn Kendrew和和Max PerutzMax Perutz确定了血红蛋白确定了血红蛋白的四级结构。的四级结构。2020世纪世纪9090年代以后年代以后,随着人类基因组计划实施,功,随着人类基因组计划实施,功能基因组与蛋白质组计划的展开能基因组与蛋白质组计划的展开 ,使蛋白,使蛋白质结构与功能的研究达到新的高峰质结构与功能的研究达到新的高峰 。.6蛋白质的分子组成蛋白质的分子组成The Molecular
4、 Component of Protein第一节第一节.7n蛋白质的生物学重要性蛋白质的生物学重要性分布广:分布广:所有器官、组织都含有蛋白质;细所有器官、组织都含有蛋白质;细胞的各个部分都含有蛋白质。胞的各个部分都含有蛋白质。含量高:含量高:蛋白质是生物体中含量最丰富的生蛋白质是生物体中含量最丰富的生物大分子,约占人体固体成分的物大分子,约占人体固体成分的45%45%,而在,而在细胞中可达细胞干重的细胞中可达细胞干重的70%70%以上。以上。1.蛋白质是生物体重要组成成分蛋白质是生物体重要组成成分.8作为生物催化剂(酶)作为生物催化剂(酶)代谢调节作用代谢调节作用免疫保护作用免疫保护作用物质
5、的转运和存储物质的转运和存储运动与支持作用运动与支持作用参与细胞间信息传递参与细胞间信息传递2.蛋白质具有重要的生物学功能蛋白质具有重要的生物学功能3.氧化供能氧化供能.9n组成蛋白质的元素组成蛋白质的元素主要有主要有C C、H H、O O、N N和和 S S。有些蛋白质含有少量磷或金属元素铁、有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘铜、锌、锰、钴、钼,个别蛋白质还含有碘 。.10 各种蛋白质的含氮量很接近,平均为各种蛋白质的含氮量很接近,平均为16。由于体内的含氮物质以蛋白质为主,因由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以此,只
6、要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量克样品中蛋白质的含量(g%)=每克样品含氮克数每克样品含氮克数 6.251001/16%n蛋白质元素组成的特点蛋白质元素组成的特点.11一、组成人体蛋白质的一、组成人体蛋白质的20种种L-氨基酸氨基酸 存在自然界中的氨基酸有存在自然界中的氨基酸有300300余种,但余种,但组成人体蛋白质的氨基酸仅有组成人体蛋白质的氨基酸仅有2020种,且均种,且均属属 L-L-氨基酸氨基酸(甘氨酸除外)。(甘氨酸除外)。.12.13H甘氨酸甘氨酸CH3丙氨酸丙氨酸L-L-氨基酸的通
7、式氨基酸的通式RC+NH3COO-H.14 除了除了2020种基本的氨基酸外,近年发现硒代半种基本的氨基酸外,近年发现硒代半胱氨酸在某些情况下也可用于合成蛋白质。硒胱氨酸在某些情况下也可用于合成蛋白质。硒代半胱氨酸从结构上来看,硒原子替代了半胱代半胱氨酸从结构上来看,硒原子替代了半胱氨酸分子中的硫原子。硒代半胱氨酸存在于少氨酸分子中的硫原子。硒代半胱氨酸存在于少数天然蛋白质中,包括过氧化物酶和电子传递数天然蛋白质中,包括过氧化物酶和电子传递链中的还原酶等。硒代半胱氨酸参与蛋白质合链中的还原酶等。硒代半胱氨酸参与蛋白质合成时,并不是由目前已知的密码子编码,具体成时,并不是由目前已知的密码子编码,
8、具体机制尚不完全清楚。机制尚不完全清楚。.15体内也存在若干不参与蛋白质合成但具有体内也存在若干不参与蛋白质合成但具有重要生理作用的重要生理作用的L-L-氨基酸,如参与合成尿素的氨基酸,如参与合成尿素的鸟氨酸(鸟氨酸(ornithineornithine)、瓜氨酸()、瓜氨酸(citrullinecitrulline)和精)和精氨酸代琥珀酸(氨酸代琥珀酸(argininosuccinateargininosuccinate)。)。.16非极性脂肪族氨基酸非极性脂肪族氨基酸极性中性氨基酸极性中性氨基酸芳香族氨基酸芳香族氨基酸酸性氨基酸酸性氨基酸碱性氨基酸碱性氨基酸二、氨基酸二、氨基酸可根据侧链结
9、构和理化可根据侧链结构和理化性质进行分类性质进行分类.17(一一)侧链含烃链的氨基酸属于非极性脂肪族侧链含烃链的氨基酸属于非极性脂肪族氨基酸氨基酸.18(二二)侧链有极性但不带电荷的氨基酸是极性侧链有极性但不带电荷的氨基酸是极性中性氨基酸中性氨基酸甲硫氨酸.19(三三)侧链含芳香基团的氨基酸是芳香族氨基酸侧链含芳香基团的氨基酸是芳香族氨基酸.20(四四)侧链含负性解离基团的氨基酸是酸性氨基酸侧链含负性解离基团的氨基酸是酸性氨基酸.21(五五)侧链含正性解离基团的氨基酸属于碱性侧链含正性解离基团的氨基酸属于碱性氨基酸氨基酸.22n几种特殊氨基酸几种特殊氨基酸 脯氨酸脯氨酸(亚氨基酸)(亚氨基酸)
10、CH2CHCOO-NH2+CH2CH2CH2CHCOO-NH2+CH2CH2.23 半胱氨酸半胱氨酸 +胱氨酸胱氨酸二硫键二硫键-HH-OOC-CH-CH2-S+NH3S-CH2-CH-COO-+NH3-OOC-CH-CH2-S+NH3S-CH2-CH-COO-+NH3-OOC-CH-CH2-SH+NH3-OOC-CH-CH2-SH+NH3HS-CH2-CH-COO-+NH3HS-CH2-CH-COO-+NH3.24 在蛋白质翻译后的修饰过程中,脯氨酸和赖氨酸在蛋白质翻译后的修饰过程中,脯氨酸和赖氨酸可分别被羟化为羟脯氨酸和羟赖氨酸。可分别被羟化为羟脯氨酸和羟赖氨酸。蛋白质分子中蛋白质分子中2
11、020种氨基酸残基的某些基团还可被种氨基酸残基的某些基团还可被甲基化、甲酰化、乙酰化、异戊二烯化和磷酸化甲基化、甲酰化、乙酰化、异戊二烯化和磷酸化等。等。这些翻译后修饰,可改变蛋白质的溶解度、稳定这些翻译后修饰,可改变蛋白质的溶解度、稳定性、亚细胞定位和与其他细胞蛋白质相互作用的性、亚细胞定位和与其他细胞蛋白质相互作用的性质等,体现了蛋白质生物多样性的一个方面。性质等,体现了蛋白质生物多样性的一个方面。.25三、三、20种氨基酸具有共同或特异的理化性质种氨基酸具有共同或特异的理化性质n两性解离及等电点两性解离及等电点氨基酸是两性电解质,其解离程度取决于所氨基酸是两性电解质,其解离程度取决于所处
12、溶液的酸碱度。处溶液的酸碱度。等电点等电点(isoelectric point,pI)在某一在某一pH的溶液中,氨基酸解离成阳离子和的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的中性。此时溶液的pH值值称为该氨基酸的称为该氨基酸的等电点等电点。(一)氨基酸具有两性解离的性质(一)氨基酸具有两性解离的性质.26pH=pI+OH-pHpI+H+OH-+H+pHpI氨基酸的兼性离子氨基酸的兼性离子 阳离子阳离子阴离子阴离子CHNH2COOHR CHNH2COOHRCHNH3+COO-R CHNH3+COO-RCHNH
13、2COO-R CHNH2COO-RCH COOHRNH3+CH COOHRNH3+.27(二)含共轭双键的氨基酸具有紫外吸收性质(二)含共轭双键的氨基酸具有紫外吸收性质色氨酸、酪氨酸色氨酸、酪氨酸的最大吸收峰在的最大吸收峰在 280 nm 附近。附近。大多数蛋白质含大多数蛋白质含有这两种氨基酸残基,有这两种氨基酸残基,所以测定蛋白质溶液所以测定蛋白质溶液280nm的光吸收值是分的光吸收值是分析溶液中蛋白质含量析溶液中蛋白质含量的快速简便的方法。的快速简便的方法。芳香族氨基酸的紫外吸收芳香族氨基酸的紫外吸收.28(三)氨基酸与茚三酮反应生成蓝紫色化合物(三)氨基酸与茚三酮反应生成蓝紫色化合物氨基
14、酸与茚三酮水合物共热,可生成氨基酸与茚三酮水合物共热,可生成蓝蓝紫色紫色化合物,其最大吸收峰在化合物,其最大吸收峰在570nm处。处。由于此吸收峰值与氨基酸的含量存在正由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法。比关系,因此可作为氨基酸定量分析方法。.29四、氨基酸通过肽键连接而形成蛋白四、氨基酸通过肽键连接而形成蛋白质或活性肽质或活性肽肽键肽键(peptide bond)是由一个氨基酸的是由一个氨基酸的-羧基与另一个氨基酸的羧基与另一个氨基酸的-氨基脱水缩合而形成氨基脱水缩合而形成的化学键。的化学键。(一)(一)氨基酸通过肽键连接而形成肽氨基酸通过肽键连接而形成肽
15、.30NH2-CH-CHOOH甘甘氨氨酸酸NH2-CH-CHOOH甘甘氨氨酸酸NH-CH-CHOHO OH甘甘氨氨酸酸+-HOH甘氨酰甘氨酸甘氨酰甘氨酸肽键NH2-CH-C-N-CH-COOHHHHONH2-CH-C-N-CH-COOHHHHO.31肽肽(peptide)是由氨基酸通过肽键缩合而形是由氨基酸通过肽键缩合而形成的化合物。成的化合物。两分子氨基酸缩合形成二肽,三分子氨基两分子氨基酸缩合形成二肽,三分子氨基酸缩合则形成三肽酸缩合则形成三肽肽链中的氨基酸分子因为脱水缩合而基团肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基不全,被称为氨基酸残基(residue)。由十个以内氨
16、基酸相连而成的肽称为寡肽由十个以内氨基酸相连而成的肽称为寡肽(oligopeptide),由更多的氨基酸相连形成的肽,由更多的氨基酸相连形成的肽称多肽称多肽(polypeptide)。.32N 末端:多肽链中有末端:多肽链中有游离游离-氨基氨基的一端的一端C 末端:多肽链中有末端:多肽链中有游离游离-羧基羧基的一端的一端n多肽链有两端:多肽链有两端:多肽链多肽链(polypeptide chain)是指许多氨是指许多氨基酸之间以肽键连接而成的一种结构。基酸之间以肽键连接而成的一种结构。N末端末端C末端末端牛核糖核酸酶牛核糖核酸酶.34 蛋白质是由许多氨基酸残基组成、折叠蛋白质是由许多氨基酸残基
17、组成、折叠成特定的空间结构、并具有特定生物学功能成特定的空间结构、并具有特定生物学功能的多肽。一般而论,蛋白质的氨基酸残基数的多肽。一般而论,蛋白质的氨基酸残基数通常在通常在50个以上,个以上,50个氨基酸残基以下则仍个氨基酸残基以下则仍称为多肽。称为多肽。.35(二)(二)体内存在多种重要的生物活性肽体内存在多种重要的生物活性肽 1.谷胱甘肽谷胱甘肽(glutathione,GSH).36GSH过氧过氧化物酶化物酶H2O2 2GSH 2H2O GSSG GSH还原酶还原酶NADPH+H+NADP+nGSH与与GSSG间的转换间的转换 .37 体内许多激素属寡肽或多肽体内许多激素属寡肽或多肽
18、神经肽神经肽(neuropeptide)2.多肽类激素及神经肽多肽类激素及神经肽.38蛋白质的分子结构蛋白质的分子结构The Molecular Structure of Protein 第二节第二节.39n蛋白质的分子结构包括蛋白质的分子结构包括:高级高级结构结构一级结构一级结构(primary structure)二级结构二级结构(secondary structure)三级结构三级结构(tertiary structure)四级结构四级结构(quaternary structure).40n定义定义:蛋白质的一级结构指在蛋白质分子从蛋白质的一级结构指在蛋白质分子从N-端至端至C-端的端的
19、氨基酸排列顺序氨基酸排列顺序。一、一、氨基酸的排列顺序决定蛋白质氨基酸的排列顺序决定蛋白质的一级结构的一级结构n主要的化学键主要的化学键:肽键肽键,有些蛋白质还包括二硫键。,有些蛋白质还包括二硫键。.41一级结构是蛋白质空间构象和特异生物学一级结构是蛋白质空间构象和特异生物学功能功能的基础的基础,但不是决定蛋白质空间构象的但不是决定蛋白质空间构象的唯一因素唯一因素。.42目前已知一级结构的蛋白质数量已相当可观,目前已知一级结构的蛋白质数量已相当可观,并且还以更快的速度增加。并且还以更快的速度增加。国际互联网有若干重要的蛋白质数据库,例如国际互联网有若干重要的蛋白质数据库,例如nEMBL(Eur
20、opean Molecular Biology Laboratory Data Library)nGenbank(Genetic Sequence Databank)nPIR(Protein Identification Resource Sequence Database)收集了大量最新的蛋白质一级结构及其他资料,收集了大量最新的蛋白质一级结构及其他资料,为蛋白质结构与功能的深入研究提供了便利。为蛋白质结构与功能的深入研究提供了便利。.43二、二、多肽链的局部主链构象为蛋白质多肽链的局部主链构象为蛋白质二级结构二级结构蛋白质分子中某一段肽链的局部空间蛋白质分子中某一段肽链的局部空间结构,即该
21、段肽链主链骨架原子的相对空结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象间位置,并不涉及氨基酸残基侧链的构象。n定义定义:n主要的化学键主要的化学键:氢键氢键 .44 -螺旋螺旋 (-helix)-折叠折叠 (-pleated sheet)-转角转角 (-turn)无规卷曲无规卷曲 (random coil)n蛋白质二级结构蛋白质二级结构n所谓肽链主链骨架原子即所谓肽链主链骨架原子即N N(氨基氮)、(氨基氮)、CC(-碳原子)和碳原子)和CoCo(羰基碳)(羰基碳)3 3个原子个原子依次重复排列。依次重复排列。.45(一)参与肽键形成的(一)参与肽键形成的6个原子在
22、同一平面上个原子在同一平面上参与肽键的参与肽键的6个原子个原子C 1、C、O、N、H、C 2位于同一平位于同一平面,面,C 1和和C 2在平面上所处的位置为反式在平面上所处的位置为反式(trans)构型,此同构型,此同一平面上的一平面上的6个原子构成了所谓的个原子构成了所谓的肽单元肽单元(peptide unit)。.46.47 -螺旋螺旋 (-helix)-折叠折叠 (-pleated sheet)-转角转角 (-turn)无规卷曲无规卷曲 (random coil)(二)(二)-螺旋结构是常见的蛋白质二级结构螺旋结构是常见的蛋白质二级结构n蛋白质二级结构蛋白质二级结构.48(二)(二)-螺
23、旋结构是常见的蛋白质二级结构螺旋结构是常见的蛋白质二级结构.49(三)(三)-折叠使多肽链形成片层结构折叠使多肽链形成片层结构.50.51(四)(四)-转角和无规卷曲在蛋白质分子中转角和无规卷曲在蛋白质分子中普遍存在普遍存在-转角转角无规卷曲是用来阐述没有确定规律性的那部无规卷曲是用来阐述没有确定规律性的那部分肽链结构。分肽链结构。.52(五)(五)二级结构可组成蛋白质分子中的二级结构可组成蛋白质分子中的模体模体在许多蛋白质分子中,可发现二个或三个具在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一有二级结构的肽段,在空间上相互接近,形成一个个有规则的二级结构组合
24、,被称为有规则的二级结构组合,被称为超二级结构超二级结构。二级结构组合形式有二级结构组合形式有3 3种:种:,。.53二个或三个具有二级结构的肽段,在空间二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,称为上相互接近,形成一个特殊的空间构象,称为模体模体(motif)。模体是具有特殊功能的超二级结构。模体是具有特殊功能的超二级结构。.54钙结合蛋白中结合钙结合蛋白中结合钙离子的模体钙离子的模体锌指结构锌指结构-螺旋螺旋-转角(或转角(或环)环)-螺旋模体螺旋模体链链-转角转角-链模体链模体链链-转角转角-螺旋螺旋-转角转角-链模体链模体n模体常见的形式模体常见的形式.5
25、5(六)氨基酸残基的侧链影响二级结构的形成(六)氨基酸残基的侧链影响二级结构的形成蛋白质二级结构是以一级结构为基础的。蛋白质二级结构是以一级结构为基础的。一段肽链其氨基酸残基的侧链适合形成一段肽链其氨基酸残基的侧链适合形成-螺旋螺旋或或-折叠,它就会出现相应的二级结构。折叠,它就会出现相应的二级结构。.56三、三、多肽链在二级结构基础上进一步折叠多肽链在二级结构基础上进一步折叠形成三级结构形成三级结构疏水键、离子键、氢键和疏水键、离子键、氢键和 范德华力等。范德华力等。n主要的化学键主要的化学键:整条肽链中全部氨基酸残基的相对空间位置。整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在
26、三维空间的排布位置。即肽链中所有原子在三维空间的排布位置。n定义定义:(一)三级结构是指整条肽链中全部氨基酸(一)三级结构是指整条肽链中全部氨基酸残基的相对空间位置残基的相对空间位置.57 肌红蛋白肌红蛋白(Mb)N 端端 C端端.58.59(二)结构域(二)结构域是三级结构层次上的独立功能区是三级结构层次上的独立功能区分子量较大的蛋白质常可折叠成多个结构较分子量较大的蛋白质常可折叠成多个结构较为紧密且稳定的区域,并各行其功能,称为结构为紧密且稳定的区域,并各行其功能,称为结构域域 (domain)。大多数结构域含有序列上连续的大多数结构域含有序列上连续的100100至至200200个氨基酸残
27、个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分解出常分解出独立独立的结构域,而各结构域的构象可以基本的结构域,而各结构域的构象可以基本不改变,并保持其功能。不改变,并保持其功能。超二级结构则不具备这种特点。超二级结构则不具备这种特点。因此,结构域也可看作是球状蛋白质的独立折叠单位,因此,结构域也可看作是球状蛋白质的独立折叠单位,有较为独立的三维空间结构。有较为独立的三维空间结构。.603-磷酸甘油醛磷酸甘油醛脱氢酶亚基脱氢酶亚基的结构示意的结构示意图图.61(三)(三)蛋白质的多肽链须折叠成正确的空间构象蛋白质的多肽链须折叠成正确的空
28、间构象分子伴侣分子伴侣(chaperon)通过提供一个保护环境从而通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。加速蛋白质折叠成天然构象或形成四级结构。分子伴侣可逆地与未折叠肽段的疏水部分结合随分子伴侣可逆地与未折叠肽段的疏水部分结合随后松开,如此重复进行可防止错误的聚集发生,后松开,如此重复进行可防止错误的聚集发生,使肽链正确折叠。使肽链正确折叠。分子伴侣也可与错误聚集的肽段结合,使之解聚分子伴侣也可与错误聚集的肽段结合,使之解聚后,再诱导其正确折叠。后,再诱导其正确折叠。分子伴侣在蛋白质分子折叠过程中二硫键的正确分子伴侣在蛋白质分子折叠过程中二硫键的正确形成起了重要的作用
29、。形成起了重要的作用。.62亚基之间的结合主要是氢键和离子键。亚基之间的结合主要是氢键和离子键。四、四、含有二条以上多肽链的蛋白质含有二条以上多肽链的蛋白质具有四级结构具有四级结构蛋白质分子中各亚基的空间排布及亚基接蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为触部位的布局和相互作用,称为蛋白质的四级蛋白质的四级结构结构。许多功能性蛋白质分子含有许多功能性蛋白质分子含有2 2条或条或2 2条以上条以上多肽链。每一条多肽链都有完整的三级结构,多肽链。每一条多肽链都有完整的三级结构,称为蛋白质的称为蛋白质的亚基亚基 (subunit)。.63由由2个亚基组成的蛋白质四级结构中,若
30、亚基分子个亚基组成的蛋白质四级结构中,若亚基分子结构相同,称之为结构相同,称之为同二聚体同二聚体(homodimer),若亚基分子,若亚基分子结构不同,则称之为结构不同,则称之为异二聚体异二聚体(heterodimer)。血红蛋白的血红蛋白的四级结构四级结构.64五、蛋白质的分类五、蛋白质的分类n根据蛋白质组成成分根据蛋白质组成成分:单纯蛋白质单纯蛋白质结合蛋白质结合蛋白质 =蛋白质部分蛋白质部分 +非蛋白质部分非蛋白质部分n根据蛋白质形状根据蛋白质形状:纤维状蛋白质纤维状蛋白质球状蛋白质球状蛋白质.65n蛋白质家族(蛋白质家族(protein family):氨基酸序列相氨基酸序列相似而且空
31、间结构与功能也十分相近的蛋白质。似而且空间结构与功能也十分相近的蛋白质。n属于同一蛋白质家族的成员,称为属于同一蛋白质家族的成员,称为同源蛋白质同源蛋白质(homologous protein)。n蛋白质超家族蛋白质超家族(superfamily):2 2个或个或2 2个以上的蛋个以上的蛋白质家族之间,其氨基酸序列的相似性并不高,白质家族之间,其氨基酸序列的相似性并不高,但含有发挥相似作用的同一模体结构。但含有发挥相似作用的同一模体结构。.66蛋白质结构与功能的关系蛋白质结构与功能的关系The Relation of Structure and Function of Protein第三节第三
32、节.67(一)一级结构是空间构象的基础(一)一级结构是空间构象的基础一、蛋白质一级结构一、蛋白质一级结构是高级结构是高级结构与功能的基础与功能的基础牛核糖核酸酶的牛核糖核酸酶的一级结构一级结构二二硫硫键键.68 天然状态,天然状态,有催化活性有催化活性 尿素、尿素、-巯基乙醇巯基乙醇 去除尿素、去除尿素、-巯基乙醇巯基乙醇非折叠状态,无活性非折叠状态,无活性.69(二)一级结构相似的蛋白质具有相似的高级(二)一级结构相似的蛋白质具有相似的高级结构与功能结构与功能一级结构相似的多肽或蛋白质,其空间构象一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。以及功能也相似。氨基酸残基序号氨基酸残基序
33、号胰岛素胰岛素 A5 5 A6 6 A10 10 A3030 人人 Thr Ser Ile Thr 猪猪 Thr Ser Ile Ala 狗狗 Thr Ser Ile Ala 兔兔 Thr Gly Ile Ser 牛牛 Ala Gly Val Ala 羊羊 Ala Ser Val Ala 马马 Thr Ser Ile Ala.70(三)(三)氨基酸序列提供重要的生物进化信息氨基酸序列提供重要的生物进化信息一些广泛存在于生一些广泛存在于生物界的蛋白质如细胞色物界的蛋白质如细胞色素素(cytochrome C),比,比较它们的一级结构,可较它们的一级结构,可以帮助了解物种进化间以帮助了解物种进化间
34、的关系。的关系。.71(四)重要蛋白质的氨基酸序列改变可引起疾病(四)重要蛋白质的氨基酸序列改变可引起疾病n例:镰刀形红细胞贫血例:镰刀形红细胞贫血N-val his leu thr pro glu glu C(146)HbS 肽链肽链HbA 肽肽 链链N-val his leu thr pro val glu C(146)这种由蛋白质分子发生变异所导致的疾病,这种由蛋白质分子发生变异所导致的疾病,称为称为“分子病分子病”。.72n肌红蛋白肌红蛋白/血红蛋白血红蛋白含有血红素辅基含有血红素辅基血红素结构血红素结构 二、二、蛋白质的功能依赖特定空间结构蛋白质的功能依赖特定空间结构(一)(一)血红
35、蛋白亚基与肌红蛋白结构相似血红蛋白亚基与肌红蛋白结构相似.73n肌红蛋白肌红蛋白(myoglobin,Mb)肌红蛋白是一个只有三级肌红蛋白是一个只有三级结构的单链蛋白质,有结构的单链蛋白质,有8 8段段-螺螺旋结构。旋结构。血红素分子中的两个丙酸血红素分子中的两个丙酸侧链以离子键形式与肽链中的侧链以离子键形式与肽链中的两个碱性氨基酸侧链上的正电两个碱性氨基酸侧链上的正电荷相连,加之肽链中的荷相连,加之肽链中的F8F8组氨组氨酸残基还与酸残基还与FeFe2+2+形成配位结合,形成配位结合,所以血红素辅基与蛋白质部分所以血红素辅基与蛋白质部分稳定结合。稳定结合。.74n血红蛋白血红蛋白(hemog
36、lobin,Hb)血红蛋白具有血红蛋白具有4个亚个亚基组成的四级结构,基组成的四级结构,每每个亚基可结合个亚基可结合1 1个血红素个血红素并携带并携带1 1分子氧分子氧。Hb亚基之间通过亚基之间通过8对盐键,使对盐键,使4个亚基紧密个亚基紧密结合而形成亲水的球状结合而形成亲水的球状蛋白。蛋白。.75脱氧脱氧Hb亚基间和亚基内的盐键亚基间和亚基内的盐键.76Hb与与Mb一样能可逆地与一样能可逆地与O2结合,结合,Hb与与O2 2结合后称为结合后称为氧合氧合Hb。氧合。氧合Hb占总占总Hb的百分数的百分数(称(称百分饱和度百分饱和度)随)随O2 2浓度变化而改变。浓度变化而改变。(二)血红蛋白亚基
37、构象变化可影响亚基(二)血红蛋白亚基构象变化可影响亚基与氧结合与氧结合.77肌红蛋白肌红蛋白(Mb)和血红蛋白和血红蛋白(Hb)的氧解离曲线的氧解离曲线.78n协同效应协同效应(cooperativity)一个寡聚体蛋白质的一个亚基与其配体结一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为合能力的现象,称为协同效应协同效应。如果是促进作用则称为如果是促进作用则称为正协同效应正协同效应 (positive cooperativity)如果是抑制作用则称为如果是抑制作用则称为负协同效应负协同效应(negative
38、 cooperativity).79.80血红素与氧结合后,铁原子半径变小,就能进血红素与氧结合后,铁原子半径变小,就能进入卟啉环的小孔中,继而引起肽链位置的变动。入卟啉环的小孔中,继而引起肽链位置的变动。.81n别构效应别构效应(allosteric effect)蛋白质空间结构的改变伴随其功能的蛋白质空间结构的改变伴随其功能的变化,称为变化,称为别构效应别构效应。.82(三)蛋白质构象改变(三)蛋白质构象改变可引起疾病可引起疾病蛋白质构象疾病蛋白质构象疾病:若蛋白质的折叠发生:若蛋白质的折叠发生错误,尽管其一级结构不变,但蛋白质的构错误,尽管其一级结构不变,但蛋白质的构象发生改变,仍可影响
39、其功能,严重时可导象发生改变,仍可影响其功能,严重时可导致疾病发生。致疾病发生。.83蛋白质构象改变导致疾病的机理蛋白质构象改变导致疾病的机理:有些蛋:有些蛋白质错误折叠后相互聚集,常形成抗蛋白水解白质错误折叠后相互聚集,常形成抗蛋白水解酶的淀粉样纤维沉淀,产生毒性而致病,表现酶的淀粉样纤维沉淀,产生毒性而致病,表现为蛋白质淀粉样纤维沉淀的病理改变。为蛋白质淀粉样纤维沉淀的病理改变。这类疾病包括这类疾病包括:人纹状体脊髓变性病、老:人纹状体脊髓变性病、老年痴呆症、亨停顿舞蹈病、疯牛病等。年痴呆症、亨停顿舞蹈病、疯牛病等。.84疯牛病是由朊病毒蛋白疯牛病是由朊病毒蛋白(prion protein
40、,PrP)引起的一组人和动物神经退行性病变。引起的一组人和动物神经退行性病变。正常的正常的PrP富含富含-螺旋,称为螺旋,称为PrPc。PrPc在某种未知蛋白质的作用下可转变成全在某种未知蛋白质的作用下可转变成全为为-折叠的折叠的PrPsc,从而致病。,从而致病。n疯牛病中的蛋白质构象改变疯牛病中的蛋白质构象改变.85第四节第四节蛋白质的理化性质蛋白质的理化性质The Physical and Chemical Characters of Protein.86一、一、蛋白质具有两性电离的性质蛋白质具有两性电离的性质蛋白质分子除两端的氨基和羧基可解离外,蛋白质分子除两端的氨基和羧基可解离外,氨基
41、酸残基侧链中某些基团,在一定的溶液氨基酸残基侧链中某些基团,在一定的溶液pH条条件下都可解离成带负电荷或正电荷的基团。件下都可解离成带负电荷或正电荷的基团。当蛋白质溶液处于某一当蛋白质溶液处于某一pH时,蛋白质解离成时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的荷为零,此时溶液的pH称为称为蛋白质的等电点。蛋白质的等电点。n蛋白质的等电点蛋白质的等电点(isoelectric point,pI).87二、蛋白质具有胶体性质二、蛋白质具有胶体性质蛋白质属于生物大分子之一,分子量可自蛋白质属于生物大分子之一,分子量可自1万至万
42、至100万之巨,其分子的直径可达万之巨,其分子的直径可达1100nm,为胶粒范围之内。为胶粒范围之内。颗粒表面电荷颗粒表面电荷 水化膜水化膜n蛋白质胶体稳定的因素蛋白质胶体稳定的因素:+带正电荷的蛋白质带正电荷的蛋白质带负电荷的蛋白质带负电荷的蛋白质在等电点的蛋白质在等电点的蛋白质水化膜水化膜+带正电荷的蛋白质带正电荷的蛋白质带负电荷的蛋白质带负电荷的蛋白质不稳定的蛋白质颗粒不稳定的蛋白质颗粒酸酸碱碱酸酸碱碱酸酸碱碱脱水作用脱水作用脱水作用脱水作用脱水作用脱水作用溶液中蛋白质的聚沉溶液中蛋白质的聚沉.89三、蛋白质空间结构破坏而引起变性三、蛋白质空间结构破坏而引起变性在某些物理和化学因素作用下
43、,其特定的在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生序的空间结构,从而导致其理化性质改变和生物活性的丧失。物活性的丧失。n蛋白质的变性蛋白质的变性(denaturation).90n造成变性的因素造成变性的因素:如如加热、乙醇等有机溶剂、强酸、强碱、加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等重金属离子及生物碱试剂等。n变性的本质变性的本质:破坏非共价键和二硫键,不改变蛋白破坏非共价键和二硫键,不改变蛋白质的一级结构。质的一级结构。.91n 应用举例应用举例:临床医学
44、上,变性因素常被应用来消毒及临床医学上,变性因素常被应用来消毒及灭菌。灭菌。此外此外,防止蛋白质变性也是有效保存蛋白质防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。制剂(如疫苗等)的必要条件。.92若蛋白质变性程度较轻,去除变性因素若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构后,蛋白质仍可恢复或部分恢复其原有的构象和功能,称为象和功能,称为复性复性(renaturation)。.93 天然状态,天然状态,有催化活性有催化活性 尿素、尿素、-巯基乙醇巯基乙醇 去除尿素、去除尿素、-巯基乙醇巯基乙醇非折叠状态,无活性非折叠状态,无活性.94在一定条件下,蛋
45、白疏水侧链暴露在外,肽在一定条件下,蛋白疏水侧链暴露在外,肽链融会相互缠绕继而聚集,因而从溶液中析出。链融会相互缠绕继而聚集,因而从溶液中析出。变性的蛋白质易于沉淀,有时蛋白质发生沉变性的蛋白质易于沉淀,有时蛋白质发生沉淀,但并不变性。淀,但并不变性。蛋白质变性后的絮状物加热可变成比较坚固蛋白质变性后的絮状物加热可变成比较坚固的凝块,此凝块不易再溶于强酸和强碱中。的凝块,此凝块不易再溶于强酸和强碱中。n蛋白质沉淀蛋白质沉淀n蛋白质的凝固作用蛋白质的凝固作用(protein coagulation).95四、蛋白质四、蛋白质在紫外光谱区有特征性吸收峰在紫外光谱区有特征性吸收峰由于蛋白质分子中含有
46、共轭双键的酪氨酸由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在和色氨酸,因此在280nm波长处有特征性吸收波长处有特征性吸收峰。蛋白质的峰。蛋白质的A280与其浓度呈正比关系,因此与其浓度呈正比关系,因此可作蛋白质定量测定。可作蛋白质定量测定。.96蛋白质经水解后产生的氨基酸也可发生茚蛋白质经水解后产生的氨基酸也可发生茚三酮反应。三酮反应。蛋白质和多肽分子中肽键在稀碱溶液中与蛋白质和多肽分子中肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色,此反应称为硫酸铜共热,呈现紫色或红色,此反应称为双双缩脲反应缩脲反应,双缩脲反应可用来检测蛋白质水解,双缩脲反应可用来检测蛋白质水解程度。程度。五、应用
47、蛋白质呈色反应可测定蛋白质五、应用蛋白质呈色反应可测定蛋白质溶液含量溶液含量 茚三酮反应茚三酮反应(ninhydrin reaction)双缩脲反应双缩脲反应(biuret reaction).97第五节第五节蛋白质的分离纯化与结构分析蛋白质的分离纯化与结构分析The Separation and Purification and Structure Analysis of Protein.98一、一、透析及超滤法可去除蛋白质溶液中的透析及超滤法可去除蛋白质溶液中的小分子化合物小分子化合物应用正压或离心力使蛋白质溶液透过有一应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜,达到浓缩蛋白
48、质溶液定截留分子量的超滤膜,达到浓缩蛋白质溶液的目的。的目的。n透析透析(dialysis)n超滤法超滤法利用透析袋把大分子蛋白质与小分子化合利用透析袋把大分子蛋白质与小分子化合物分开的方法物分开的方法。.99二、丙酮沉淀、盐析及免疫沉淀是常用二、丙酮沉淀、盐析及免疫沉淀是常用的蛋白质浓缩方法的蛋白质浓缩方法使用使用丙酮沉淀丙酮沉淀时,必须在时,必须在04低温下进行,低温下进行,丙酮用量一般丙酮用量一般10倍于蛋白质溶液体积。蛋白质倍于蛋白质溶液体积。蛋白质被丙酮沉淀后,应立即分离。除了丙酮以外,被丙酮沉淀后,应立即分离。除了丙酮以外,也可用乙醇沉淀。也可用乙醇沉淀。盐析盐析(salt pre
49、cipitation)是将硫酸铵、硫酸钠或是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。被中和以及水化膜被破坏,导致蛋白质沉淀。.100免疫沉淀法:免疫沉淀法:将某一纯化蛋白质免疫动物可获将某一纯化蛋白质免疫动物可获得抗该蛋白的特异抗体。利用特异抗体识别相应得抗该蛋白的特异抗体。利用特异抗体识别相应的抗原蛋白,并形成抗原抗体复合物的性质,可的抗原蛋白,并形成抗原抗体复合物的性质,可从蛋白质混合溶液中分离获得抗原蛋白。从蛋白质混合溶液中分离获得抗原蛋白。.101三、利用荷电性质可电泳分离蛋白质三、利用荷
50、电性质可电泳分离蛋白质蛋白质在高于或低于其蛋白质在高于或低于其pIpI的溶液中为带电的的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技蛋白质在电场中泳动而达到分离各种蛋白质的技术术,称为称为电泳电泳(elctrophoresis)。根据支撑物的不同,可分为薄膜电泳、凝胶根据支撑物的不同,可分为薄膜电泳、凝胶电泳等。电泳等。.102SDS-聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,常用于蛋白质分子,常用于蛋白质分子量的测定。量的测定。等电聚焦电泳等电聚焦电泳,通过蛋白质等电点的差异而分,通过蛋白质等电点的差