1、回顾旧知回顾旧知11.2.3.4.5.6.()()0;()();()();()();()()(01);()();1()()(0-xxxxaf x=c,f x=f x=x,f x=xf x=sinx,f x=cosxf x=cosx,f x=-sinxf x=a,f x=a lna a,a,f x=e,f x=ef x=log x,f x=a,axl na 若则若则若则若则若则若则若则若则若则且若则且 特别地 若则特别地 若则若则且若则且1);1()().,f x=lnx,f x=x 特别地 若则特别地 若则基本初等函数的导数公式求切线方程的步骤:);()()1(xfxfy的导数求函数);,()
2、2(00yx求切点坐标 03();kfx求切线的斜率).)(000 xxxfyy 4 根据直线方程的点斜式写出切线方程,即:导数的四则运算法则F佳,)()(2xxxgxfy设22()()()yxxxxxxxxxxxxx2)(221xx 0()()limxyyxf xg x)12(lim0 xxx21x2()()2,()1,fxxx gxx而 0()()limxyyxf xg x 21x()()()()f xg xfxg x()()()()f xg xfxg x同理可得()()()()f xg xfxg x导数的运算法则1:解:)3()1(3xxy)(cos)2(xx)3()()(3xx132
3、x.sin2ln2xx)cos2()2(xyx例3.3(1)3;(2)2cos.xyxxyx求下列函数的导数导数的运算法则2:)()()()()().(xgxfxgxfxgxf前导后不导加上前面不导后导如果上式中g(x)=c,则公式变为:()()()()C f xC f xC fxC fx导数的运算法则3:)0)()()()()()()()(2xgxgxgxfxgxfxgxf上导下不导减去上面不导下导,然后除以分母的平方。(2)()()()()()()f x g xf x g xf x g x2()()()()()(3)()()f xfx g xf x g xg xg x.0)(xg其中导数的运算法则(1)()()()()f xg xfxg x)()(xf cxcf解:)()1(3xexy)()(33xxexex)sin2()2(2xxyxxexex3232222)()(sin2)sin2(xxxxx42sin4cos2xxxxx3sin4cos2xxxx课本P78 练习 2课本P78 练习 3课堂小结本小节结束F佳