5.1.2导数的概念及其几何意义1ppt课件-2022新人教A版(2019)《高中数学》选择性必修第二册.pptx

上传人(卖家):Q123 文档编号:3586522 上传时间:2022-09-21 格式:PPTX 页数:20 大小:1.43MB
下载 相关 举报
5.1.2导数的概念及其几何意义1ppt课件-2022新人教A版(2019)《高中数学》选择性必修第二册.pptx_第1页
第1页 / 共20页
5.1.2导数的概念及其几何意义1ppt课件-2022新人教A版(2019)《高中数学》选择性必修第二册.pptx_第2页
第2页 / 共20页
5.1.2导数的概念及其几何意义1ppt课件-2022新人教A版(2019)《高中数学》选择性必修第二册.pptx_第3页
第3页 / 共20页
5.1.2导数的概念及其几何意义1ppt课件-2022新人教A版(2019)《高中数学》选择性必修第二册.pptx_第4页
第4页 / 共20页
5.1.2导数的概念及其几何意义1ppt课件-2022新人教A版(2019)《高中数学》选择性必修第二册.pptx_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、5.1.2 5.1.2 导数的概念及导数的概念及其几何意义其几何意义问题1 高台跳水运动员的速度平均速度瞬时速度2()4.94.811h ttt(1)(1)4.95hthvtt 0(1)(1)lim5ththt 问题2 抛物线的切线斜率割线斜率切线斜率2()f xx(1)(1)2fxfkxx 0(1)(1)lim2xfxfx 复习引入复习引入瞬时变化率瞬时变化率平均变化率平均变化率 这两类问题都采用了由“平均变化率”逼近“瞬时变化率”的思想方法.问题问题1 解决这两类问题时有什么共性?探究新知探究新知问题问题2 一般地,对于函数 yf(x),你能用“平均变化率”逼近“瞬时变化率”的思想方法研究

2、其在某点(如 x x0)处的瞬时变化率吗?追问1:为了研究函数 yf(x)在 x x0 处的瞬时变化率,我们可以研究哪个范围内函数值的平均变化率呢?探究新知探究新知 为了研究函数 yf(x)在 x x0 处的瞬时变化率,我们可以选取自变量 x 的一个改变量x,可以是正值,也可以是负值,但不为 0.计算自变量 x 从 x0变化到 x0+x 这个过程中函数值的平均变化率.追问2:函数 yf(x)的自变量 x 从 x0 变化到 x0+x 这个过程中,函数值的平均变化率如何表示呢?探究新知探究新知00()()yf xxf xxx自变量 x:0 x0 xxx函数值 y:0()f xx 0()f x00(

3、)()yf xxf x 函数 yf(x)从 x0 到 的平均变化率:0 xx追问3:函数 yf(x)在 xx0 处的瞬时变化率该如何表示呢?探究新知探究新知无限趋近于00()()yf xxf xxxx00 x0 xx 无限趋近于无限趋近于?追问4:当x无限趋近于 0 时,平均变化率 是否一定会无限趋近于一个确定的值呢?yx探究新知探究新知不一定(0)(0)|.yfxfxxxx考查 f(x)|x|在 x0 附近的变化情况.举反例:当 时,0 x 当 时,0 x 1.yxxx 1.yxxxxyO1 21234-1-2 f(x)|x|导数是平均变化率的极限,是瞬时变化率的数学表达.概念形成概念形成导

4、数(瞬时变化率)定义:如果如果当当 无限趋近于无限趋近于 0 时,平均变化率时,平均变化率 无限趋近于一个确定的无限趋近于一个确定的值,值,即即 有极有极限限,则,则称称_,并把这个确定的值叫做并把这个确定的值叫做_(也称为也称为_),记作记作_或或_.用用极限符号极限符号表示这个定义,就是表示这个定义,就是_ xyxyx0()fx0|x xy00000()()()limlim.xxf xxf xyfxxx y f(x)在在x x0处处可导瞬时变化率 yf(x)在在xx0处的处的导数问题问题3 根据导数的定义,你能用导数来重述跳水运动员速度问题和抛物线切线问题的结论吗?探究新知探究新知问题1

5、高台跳水运动员的速度平均速度瞬时速度2()4.94.811h ttt(1)(1)4.95hthvtt 0(1)(1)lim5ththt 问题2 抛物线的切线斜率割线斜率切线斜率2()f xx(1)(1)2fxfkxx 0(1)(1)lim2xfxfx 瞬时变化率瞬时变化率平均变化率平均变化率(1)h(1)f 实际上,导数可以描述许多运动变化事物的瞬时变化率.比如效率、国内生产总值的增长率等.例1 设 ,求1()f xx(1).f 典例分析典例分析解:(1)(1)yfxfxxQ111xx1.1x 001(1)limlim()1xxyfxx 1.问题问题4 你能总结出求函数 yf(x)在 xx0

6、处导数的步骤吗?方法归纳方法归纳第一步,写出 并化简;00()()f xxf xyxx00()lim.xyfxx 第二步,求极限 ,若 存在,则0limxyx 0limxyx 巩固练习巩固练习1.设函数 f(x)在xx0处可导,若 ,则f(x0)=()A.1 B.-1 C.D.000(3)()lim1xf xxf xx 1313C2.设函数 f(x)在xx0处可导,若 ()A.f(x0)B.2 f(x0)C.-2 f(x0)D.0000()()limhf xhf xhhB3.设函数 f(x)x21.求:(1)当自变量 x 由 1 变到 1.1 时,函数的平均变化率;(2)函数在 x1 处的导数

7、.解:(1)22(1.1)(1)1.11(11)0.212.11.1 10.10.1yffx(2)222(1)(1)(1)1(11)2+2+yfxfxxxxxxxxQ 00(1)limlim(2+)2xxyfxx 巩固练习巩固练习解:由导数的定义,知f(x)函数在 x1 处的导数为0(1)(1)(1)limxfxffx(1)(1)11111 fxfxxxxQ 4.设函数 在 x1 处的导数.()f xx011(1)lim211 xfx 因此函数 在 x1 处的导数为 .()f xx12巩固练习巩固练习例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.已知在第 x h时

8、,原油的温度(单位:)为 计算第2 h与第6 h时,原油温度的瞬时变化率,并说明它们的意义.2()715(0 8).yf xxxx 典例分析典例分析导数是瞬时变化率的数学表达.追问1:这个实际问题与导数有什么关系?解:在第2h和第6h时,原油温度的瞬时变化率就是 和(2)f(6).f 22(2)7(2)15(27 2 15)xxx 3,x 00(2)limlim(3)xxyfxx 所以3.(2)(2)yfxfxx因为同理,(6)5.f 追问2:和 在这个实际问题中的意义是什么?(6)5f(2)3f 在本题中 是原油温度在时刻 x0 的瞬时变化率,它反映的是原油温度在时刻 x0 附近的变化情况.

9、00()(08)fxx 表示在第2h时,原油温度的瞬时变化率为3/h.这说明在第2h附近,原油温度大约以3/h的速率下降.(2)3f 导数(瞬时变化率)为负,体现了下降的变化趋势.表示在第6h时,原油温度的瞬时变化率为5/h,这说明在第6h附近,原油温度大约以5/h的速率上升.(6)5f 导数(瞬时变化率)为正,体现了上升的变化趋势.例3 一辆汽车在公路上沿直线变速行驶,假设ts时汽车的速度(单位:m/s)为 yv(t)-t26t60,求汽车在第2s与第6s时的瞬时加速度,并说明它们的意义.追问1:速度与瞬时加速度的关系是什么?瞬时加速度就是速度的瞬时变化率.典例分析典例分析解:在第2s和第6

10、s时,汽车的瞬时加速度就是 和(2)v(6).v22(2)6(2)60(26 260)ttt 2,t 00(2)limlim(2)ttyvtt 所以2.(2)(2)yvtvtt因为同理,(6)6.v 追问追问2:和 在这个实际问题中的意义是什么?(6)6v(2)2v 在本题中 是 t0时刻汽车的瞬时加速度,反映了速度在 t0时刻附近的变化情况.00()(0)v tt 表示在第2s时,汽车的瞬时加速度是2m/s2,这说明在第2s附近,汽车的速度每秒大约增加2m/s.(2)2v导数(瞬时变化率)为正,体现了增加的变化趋势.表示在第6s时,汽车的瞬时加速度是6m/s2,这说明在第6s附近,汽车的速度

11、每秒大约减少6m/s.(6)6v 导数(瞬时变化率)为负,体现了减少的变化趋势.瞬时速度是位移的瞬时变化率,瞬时加速度是速度的瞬时变化率.5.一质点A沿直线运动,位移y(单位:m)与时间t(单位:s)之间的关系为y(t)=2t2+1,求质点A在t=2.7s时的瞬时速度.解:巩固练习巩固练习222(2.7)1(2 2.71)tt 00(2.7)limlim(10.8+)10.8ttyytt 所以(2.7)(2.7)yytytt因为10.82 t 因此质点A在t=2.7s时的瞬时速度为10.8m/s.课堂小结课堂小结第一步,写出 并化简;00()()f xxf xyxx00()lim.xyfxx 第二步,求极限 ,若 存在,则0limxyx 0limxyx 2.求函数 yf(x)在 xx0 处导数的步骤00000()()()limlim.xxf xxf xyfxxx 1.导数的定义:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 人教A版(2019) > 选择性必修 第二册
版权提示 | 免责声明

1,本文(5.1.2导数的概念及其几何意义1ppt课件-2022新人教A版(2019)《高中数学》选择性必修第二册.pptx)为本站会员(Q123)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|