2020春 小学数学典型应用题精讲宝典.DOC

上传人(卖家):田田田 文档编号:365238 上传时间:2020-03-13 格式:DOC 页数:41 大小:926.02KB
下载 相关 举报
2020春 小学数学典型应用题精讲宝典.DOC_第1页
第1页 / 共41页
2020春 小学数学典型应用题精讲宝典.DOC_第2页
第2页 / 共41页
2020春 小学数学典型应用题精讲宝典.DOC_第3页
第3页 / 共41页
2020春 小学数学典型应用题精讲宝典.DOC_第4页
第4页 / 共41页
2020春 小学数学典型应用题精讲宝典.DOC_第5页
第5页 / 共41页
点击查看更多>>
资源描述

1、 小学数学典型应用题精讲宝典应用题类型:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做

2、归一问题。【数量关系】 总量份数1份数量 1份数量所占份数所求几份的数量 另一总量(总量份数)所求份数【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.650.12(元) (2)买16支铅笔需要多少钱?0.12161.92(元)列成综合算式 0.65160.12161.92(元) 答:需要1.92元。例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 903310(公顷) (2)5台拖拉机6天耕地多少公顷? 1056300

3、(公顷)列成综合算式 9033561030300(公顷) 答:5台拖拉机6 天耕地300公顷。例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解 (1)1辆汽车1次能运多少吨钢材? 100545(吨) (2)7辆汽车1次能运多少吨钢材? 5735(吨) (3)105吨钢材7辆汽车需要运几次? 105353(次)列成综合算式 105(100547)3(次) 答:需要运3次。2 归总问题【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的

4、总路程等。【数量关系】 1份数量份数总量 总量1份数量份数 总量另一份数另一每份数量【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解 (1)这批布总共有多少米? 3.27912531.2(米) (2)现在可以做多少套? 2531.22.8904(套)列成综合算式 3.27912.8904(套) 答:现在可以做904套。例2 小华每天读24页书,12天读完了红岩一书。小明每天读36页书,几天可以读完红岩?解 (1)红岩这本书总共多少页? 2412288(页) (2

5、)小明几天可以读完红岩? 288368(天)列成综合算式 2412368(天) 答:小明8天可以读完红岩。例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解 (1)这批蔬菜共有多少千克? 50301500(千克) (2)这批蔬菜可以吃多少天? 1500(5010)25(天)列成综合算式 5030(5010)15006025(天) 答:这批蔬菜可以吃25天。3 和差问题【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。【数量关系】 大数(和差) 2 小数(和差) 2【解题思路和方

6、法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解 甲班人数(986)252(人) 乙班人数(986)246(人) 答:甲班有52人,乙班有46人。例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。解 长(182)210(厘米) 宽(182)28(厘米)长方形的面积 10880(平方厘米) 答:长方形的面积为80平方厘米。例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(3230)2

7、千克,且甲是大数,丙是小数。由此可知甲袋化肥重量(222)212(千克)丙袋化肥重量(222)210(千克)乙袋化肥重量321220(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(1423),甲与乙的和是97,因此甲车筐数(971423)264(筐)乙车筐数976433(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。4 和倍问题【含义】 已知两个数的和及

8、大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】 总和 (几倍1)较小的数 总和 较小的数 较大的数 较小的数 几倍 较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解 (1)杏树有多少棵? 248(31)62(棵) (2)桃树有多少棵? 623186(棵)答:杏树有62棵,桃树有186棵。例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解 (1)西库存粮数480(1.41)200(吨) (

9、2)东库存粮数480200280(吨)答:东库存粮280吨,西库存粮200吨。例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(2824)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(5232)就相当于(21)倍,那么,几天以后甲站的车辆数减少为 (5232)(21)28(辆)所求天数为 (5228)(2824)6(天)答:6天以后乙站车辆数是甲站的2倍。例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的

10、3倍多6,求三数各是多少?解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(17046)就相当于(123)倍。那么,甲数(17046)(123)28乙数282452丙数283690答:甲数是28,乙数是52,丙数是90。5 差倍问题【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。【数量关系】 两个数的差(几倍1)较小的数 较小的数几倍较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利

11、用公式。例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?解 (1)杏树有多少棵? 124(31)62(棵) (2)桃树有多少棵? 623186(棵)答:果园里杏树是62棵,桃树是186棵。例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解 (1)儿子年龄27(41)9(岁) (2)爸爸年龄9436(岁)答:父子二人今年的年龄分别是36岁和9岁。例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解 如果把上月盈利作为1倍量,则(3012)万元就

12、相当于上月盈利的(21)倍,因此 上月盈利(3012)(21)18(万元)本月盈利183048(万元)答:上月盈利是18万元,本月盈利是48万元。例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(13894)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(13894)就相当于(31)倍,因此剩下的小麦数量(13894)(31)22(吨)运出的小麦数量942272(吨)运粮的天数7298(天)答:8天以后剩下的玉米是小麦的3倍。6 倍比问题【含义】

13、有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。【数量关系】 总量一个数量倍数 另一个数量倍数另一总量【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解 (1)3700千克是100千克的多少倍? 370010037(倍) (2)可以榨油多少千克? 40371480(千克)列成综合算式 40(3700100)1480(千克)答:可以榨油1480千克。例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名

14、师生共植树多少棵?解 (1)48000名是300名的多少倍? 48000300160(倍) (2)共植树多少棵? 40016064000(棵)列成综合算式 400(48000300)64000(棵)答:全县48000名师生共植树64000棵。例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解 (1)800亩是4亩的几倍? 8004200(倍) (2)800亩收入多少元? 111112002222200(元) (3)16000亩是800亩的几倍? 1600080020(倍) (4)16000亩收入多少

15、元? 22222002044444000(元)答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。7 相遇问题【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】 相遇时间总路程(甲速乙速)总路程(甲速乙速)相遇时间【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解 392(2821)8(小时)答:经过8小时两船相遇。例2 小李和小刘在

16、周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解 “第二次相遇”可以理解为二人跑了两圈。因此总路程为4002相遇时间(4002)(53)100(秒)答:二人从出发到第二次相遇需100秒时间。例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(32)千米,因此,相遇时间(32)(1513

17、)3(小时)两地距离(1513)384(千米)答:两地距离是84千米。8 追及问题【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】 追及时间追及路程(快速慢速) 追及路程(快速慢速)追及时间【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解 (1)劣马先走12天能走多少千米? 7512900(千米)

18、 (2)好马几天追上劣马? 900(12075)20(天)列成综合算式 7512(12075)9004520(天)答:好马20天能追上劣马。例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用40(500200)秒,所以小亮的速度是 (500200)40(500200)3001003(米)答:小亮的速度是每秒3

19、米。例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解 敌人逃跑时间与解放军追击时间的时差是(2216)小时,这段时间敌人逃跑的路程是10(2216)千米,甲乙两地相距60千米。由此推知追及时间10(2216)60(3010)120206(小时)答:解放军在6小时后可以追上敌人。例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。解 这道题

20、可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(162)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为 162(4840)4(小时)所以两站间的距离为 (4840)4352(千米)列成综合算式 (4840)162(4840)884352(千米)答:甲乙两站的距离是352千米。例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(1802)米,这是因为哥

21、哥比妹妹每分钟多走(9060)米,那么,二人从家出走到相遇所用时间为1802(9060)12(分钟)家离学校的距离为 9012180900(米)答:家离学校有900米远。例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(105)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(105)分钟。如果从家一开始就跑步,可比步行少9分钟,由

22、此可知,行1千米,跑步比步行少用9(105)分钟。所以 步行1千米所用时间为 19(105)0.25(小时)15(分钟)跑步1千米所用时间为 159(105)11(分钟)跑步速度为每小时 111605.5(千米)答:孙亮跑步速度为每小时 5.5千米。9 植树问题【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】 线形植树 棵数距离棵距1 环形植树 棵数距离棵距 方形植树 棵数距离棵距4 三角形植树 棵数距离棵距3 面积植树 棵数面积(棵距行距)【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。例1 一条河

23、堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解 1362168169(棵)答:一共要栽69棵垂柳。例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解 4004100(棵) 答:一共能栽100棵白杨树。例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解 2204841104106(个)答:一共可以安装106个照明灯。例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解 96(0.60.4)960.24400(块)答:至少需要400块地板

24、砖。例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解 (1)桥的一边有多少个电杆? 50050111(个) (2)桥的两边有多少个电杆? 11222(个) (3)大桥两边可安装多少盏路灯?22244(盏)答:大桥两边一共可以安装44盏路灯。10 年龄问题【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。【解题思路和

25、方法】 可以利用“差倍问题”的解题思路和方法。 两个数的差(几倍1)较小的数例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?解 3557(倍) (35+1)(5+1)6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?解 (1)母亲比女儿的年龄大多少岁? 37730(岁) (2)几年后母亲的年龄是女儿的4倍?30(41)73(年)列成综合算式 (377)(41)73(年)答:3年后母亲的年龄是女儿的4倍。例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?解

26、 今年父子的年龄和应该比3年前增加(32)岁,今年二人的年龄和为 493255(岁)把今年儿子年龄作为1倍量,则今年父子年龄和相当于(41)倍,因此,今年儿子年龄为 55(41)11(岁)今年父亲年龄为 11444(岁)答:今年父亲年龄是44岁,儿子年龄是11岁。例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?(可用方程解)解这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:过去某一年今 年将来某一年甲岁岁61岁乙4岁岁岁表中两个“”表示同一个数,两个“”表示同一个数。因为两个人的年龄差

27、总相等:461,也就是4,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 (614)319(岁)甲今年的岁数为 611942(岁)乙今年的岁数为 421923(岁)答:甲今年的岁数是42岁,乙今年的岁数是23岁。11 行船问题【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。【数量关系】 (顺水速度逆水速度)2船速 (顺水速度逆水速度)2水速 顺水速船速2逆水速逆水速水速2 逆水速船速2顺水速顺水速水速2【解题

28、思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?解 由条件知,顺水速船速水速3208,而水速为每小时15千米,所以,船速为每小时 32081525(千米)船的逆水速为 251510(千米)船逆水行这段路程的时间为 3201032(小时)答:这只船逆水行这段路程需用32小时。例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?解由题意得 甲船速水速3601036 甲船速水速3601820可见 (3620)相当于水速的2倍,所以, 水速为

29、每小时 (3620)28(千米)又因为, 乙船速水速36015,所以, 乙船速为 36015832(千米)乙船顺水速为 32840(千米)所以, 乙船顺水航行360千米需要 360409(小时)答:乙船返回原地需要9小时。例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?解 这道题可以按照流水问题来解答。(1)两城相距多少千米? (57624)31656(千米)(2)顺风飞回需要多少小时? 1656(57624)2.76(小时) 列成综合算式 (57624)3(57624)2.76(小时)答:飞机顺风飞回需要2.7

30、6小时。12 列车问题【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。【数量关系】 火车过桥:过桥时间(车长桥长)车速 火车追及:追及时间(甲车长乙车长距离)(甲车速乙车速) 火车相遇:相遇时间(甲车长乙车长距离)(甲车速乙车速)【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?解 火车3分钟所行的路程,就是桥长与火车车身长度的和。(1)火车3分钟行多少米? 90032700(米)(2)这列火车长多少米? 27002400300(米)列成综合算

31、式 90032400300(米)答:这列火车长300米。例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?解 火车过桥所用的时间是2分5秒125秒,所走的路程是(8125)米,这段路程就是(200米桥长),所以,桥长为8125200800(米)答:大桥的长度是800米。例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?解 从追上到追过,快车比慢车要多行(225140)米,而快车比慢车每秒多行(2217)米,因此,所求的时间为(225140)(2217)73(秒)

32、答:需要73秒。例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?解 如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。150(223)6(秒)答:火车从工人身旁驶过需要6秒钟。例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?解 车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在(8858)秒的时间内行驶了(20001250)米的路程,因此,火车的车速为每秒(20001250)(8858)

33、25(米)进而可知,车长和桥长的和为(2558)米,因此,车长为 25581250200(米)答:这列火车的车速是每秒25米,车身长200米。13 时钟问题【含义】 就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。【数量关系】 分针的速度是时针的12倍, 二者的速度差为11/12。 通常按追及问题来对待,也可以按差倍问题来计算。【解题思路和方法】 变通为“追及问题”后可以直接利用公式。例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?解 钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分

34、钟走5/601/12格。每分钟分针比时针多走(11/12)11/12格。4点整,时针在前,分针在后,两针相距20格。所以分针追上时针的时间为 20(11/12) 22(分)答:再经过22分钟时针正好与分针重合。例2 四点和五点之间,时针和分针在什么时候成直角?解 钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(54)格,如果分针在时针后与它成直角,那么分针就要比时针多走 (5415)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5415)格。再根据1分钟分针比时针多走(11/12)格就可以求出二针

35、成直角的时间。 (5415)(11/12) 6(分)(5415)(11/12) 38(分)答:4点06分及4点38分时两针成直角。例3 六点与七点之间什么时候时针与分针重合?解 六点整的时候,分针在时针后(56)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。(56)(11/12) 33(分)答:6点33分的时候分针与时针重合。14 盈亏问题【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数(盈亏)分

36、配差如果两次都盈或都亏,则有:参加分配总人数(大盈小盈)分配差参加分配总人数(大亏小亏)分配差【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?解 按照“参加分配的总人数(盈亏)分配差”的数量关系:(1)有小朋友多少人? (111)(43)12(人)(2)有多少个苹果? 3121147(个)答:有小朋友12人,有47个苹果。例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?解 题中原定完成任务的天数,就相当于“参加

37、分配的总人数”,按照“参加分配的总人数(大亏小亏)分配差”的数量关系,可以得知原定完成任务的天数为 (26083004)(300260)22(天)这条路全长为 300(224)7800(米)答:这条路全长7800米。例3 学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人?解 本题中的车辆数就相当于“参加分配的总人数”,于是就有(1)有多少车? (300)(4540)6(辆)(2)有多少人? 40630270(人)答:有6 辆车,有270人。15 工程问题【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常

38、常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。工作量工作效率工作时间 工作时间工作量工作效率工作时间总工作量(甲工作效率乙工作效率)【解题思路和方法】 变通后可以利用上述数量关系的公式。例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?解 题中的“一项工程”是工作总量,由于

39、没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/101/15)。由此可以列出算式: 1(1/101/15)11/66(天)答:两队合做需要6天完成。例2 一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?解 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/61/8),二人合做时每小时完成(1/61/8)。因为二人合做需要1(1/61/8)小时,

40、这个时间内,甲比乙多做24个零件,所以(1)每小时甲比乙多做多少零件?241(1/61/8)7(个)(2)这批零件共有多少个? 7(1/61/8)168(个)答:这批零件共有168个。解二 上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为 1/61/843由此可知,甲比乙多完成总工作量的 43 / 43 1/7所以,这批零件共有 241/7168(个)例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?解 必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,

41、我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是60125 60106 60154 因此余下的工作量由乙丙合做还需要 (6052)(64)5(小时)答:还需要5小时才能完成。 也可以用(1-1/12*2)/(1/10+1/15)例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?解 注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水

42、的流量就是工作效率。要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(145),2个进水管15小时注水量为(1215),从而可知每小时的排水量为 (1215145)(155)1即一个排水管与每个进水管的工作效率相同。由此可知一池水的总工作量为 1451515 又因为在2小时内,每个进水管的注水量为 12, 所以,2小时内注满一池水 至少需要多少个进水管? (1512)(12)8.59(个) 答:至少需要9个进水管。16 正反比例问题【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。【数量关系】 判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学 > 数学 > 人教版(2024) > 六年级下册
版权提示 | 免责声明

1,本文(2020春 小学数学典型应用题精讲宝典.DOC)为本站会员(田田田)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|