21第2课时一元二次方程的解及其估算课件.ppt

上传人(卖家):晟晟文业 文档编号:3710690 上传时间:2022-10-06 格式:PPT 页数:17 大小:268.47KB
下载 相关 举报
21第2课时一元二次方程的解及其估算课件.ppt_第1页
第1页 / 共17页
21第2课时一元二次方程的解及其估算课件.ppt_第2页
第2页 / 共17页
21第2课时一元二次方程的解及其估算课件.ppt_第3页
第3页 / 共17页
21第2课时一元二次方程的解及其估算课件.ppt_第4页
第4页 / 共17页
21第2课时一元二次方程的解及其估算课件.ppt_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、第二章第二章 一元二次方程一元二次方程2.1 认识一元二次方程认识一元二次方程第2课时 一元二次方程的解及其估算1.理解方程的解的概念.2.经历对一元二次方程解的探索过程并理解其意义.(重点)3.会估算一元二次方程的解.(难点)学习目标学习目标一元二次方程有哪些特点?一元二次方程的一般形式是什么?一元二次方程的特点:一元二次方程的特点:只含有一个未知数;未知数的最高次数是2;是是整式方程一元二次方程的一般形式:一元二次方程的一般形式:ax2+bx+c=0(a、b、c为常数,a0)一元二次方程的根的概念:使一元二次方程等号两边相等的未知数的值叫做一元二次方程的解(又叫做根).下面哪些数是方程 x

2、2 x 6=0 的解?-4,-3,-2,-1,0,1,2,3,4解:3和-2是方程 x2 x 6=0 的解.你注意到了吗?一元二次方程你注意到了吗?一元二次方程可能不止一个根可能不止一个根.一元二次方程的根1练一练:练一练:已知a是方程 x2+2x2=0 的一个实数根,求 2a2+4a+2018的值.解:由题意,得2220,aa 222.即aa 2242018aa 2 220182022 22(2)2018aa 方法总结:方法总结:已知解求代数式的值,先把已知解代入,再注意观察,有时需运用到整体思想,求解时,将所求代数式的一部分看作一个整体,再用整体思想代入求值例1 在上一课中,我们知道四周未

3、铺地毯部分的宽度x满足方程2x2-13x+11=0,你能求出这个宽度吗?一元二次方程解的估算2例2 对于方程2x2-13x+11=0.(1)x可能小于0吗?说说你的理由(2)x可能大于4吗?可能大于2.5吗?说说你的理由.(3)完成下表:(4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴进行交流1150-4-7 在上一课中,梯子的底端滑动的距离x满足方程x2+12 x-15=0.10m8m1mxm你能猜出滑动距离x的大致范围吗?例3下面是小亮的求解过程:可知x取值的大致范围是1x1.5.进一步计算:所以1.1x1.2,由此他猜测x整数部分是1,十分位部分是1用“两边夹”思想解

4、一元二次方程的步骤:在未知数x的取值范围内排除一部分取值;根据题意所列的具体情况再次进行排除;对列出能反映未知数和方程的值的表格进行再次筛选;最终得出未知数的最小取值范围或具体数据.规律方法:规律方法:上述求解是利用了“两边夹”的思想.1.请求出一元二次方程 x2-2x-1=0的正数根(精确到0.1).解:(1)列表.依次取x=0,1,2,3,由上表可发现,当2x3时,-1 x2-2x-1 2.(2)继续列表,依次取x=2.1,2.2,2.3,2.4,2.5,由表可发现,当2.4x2.5时,-0.04 x2-2x-1 0.25.(3)取x=2.45,则x2-2x-10.1025.2.4x2.4

5、5,x2.4.2.根据题意,列出方程,并估算方程的解:一面积为120 m2 的矩形苗圃,它的长比宽多2 m,苗圃的长和宽各是多少?解:设苗圃的宽为x m,则长为(x+2)m.根据题意,得 x (x+2)=120,即 x2+2x-120=0.由题意,得x的取值范围大致是0 x 11.解方程 x2+2x-120=0.完成下表(在0 x 11这个范围内取值计算,逐步逼近):8 9 10 11-40 -21 0 23120 m2(x+2)mxm所以x=10.因此这苗圃的长是12米,宽是10米.3.已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a 的值.解:把x=3代入方程x2+ax+a=0,得32+3a+a=0,化简,得9+4a=0.9.4a 即4a=-9.4.已知关于x的一元二次方程 ax2+bx+c=0(a0)一个根为1,求 a+b+c的值.解:由题意,得2110,abc 0.即abc 思考:(1)若 a+b+c=0,你能通过观察,求出方程ax2+bx+c=0(a0)的一个根吗?解:由题意,得2110即,abc 0,abc 方程ax2+bx+c=0(a0)的一个根是1.x=2(2)若 a-b+c=0,4a+2b+c=0,你能通过观察,求出方程ax2+bx+c=0(a0)的一个根吗?解一元二次方程(“两边夹”方法)确定其解的大致范围列表、计算进行两边“夹逼”求得近似解

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(21第2课时一元二次方程的解及其估算课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|