1、绝密启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第卷和第卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效. 3. 第卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液
2、、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)P(B).第卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的(1)若复数z满足 其中i为虚数单位,则z=( )(A)1+2i(B)12i(C) (D)(2)设集合 则=( )(A) (B)(C)(D)(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的
3、范围是17.5,30,样本数据分组为17.5,20), 20,22.5), 22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56(B)60(C)120(D)140(4)若变量x,y满足则的最大值是( )(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A) (B) (C) (D)(6)已知直线a,b分别在两个不同的平面,内.则“直线a和直线b相交”是“平面和平面相交”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (
4、D)既不充分也不必要条件(7)函数f(x)=(sin x+cos x)(cos x sin x)的最小正周期是( )(A) (B) (C) (D)2(8)已知非零向量m,n满足4m=3n,cos=.若n(tm+n),则实数t的值为( )(A)4 (B)4 (C) (D)(9)已知函数f(x)的定义域为R.当x0时, ;当 时,;当 时, .则f(6)= ( )(A)2 (B)1 (C)0 (D)2(10)若函数的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称具有T性质.下列函数中具有T性质的是( )(A)(B)(C)(D)第卷(共100分)二、填空题:本大题共5小题,每小题5分,
5、共25分.(11)执行右边的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为_.(12)若(ax2+)5的展开式中x5的系数是80,则实数a=_.(13)已知双曲线E: (a0,b0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_.(14)在上随机地取一个数k,则事件“直线y=kx与圆相交”发生的概率为 . (15)已知函数 其中,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是_.三、解答题:本答题共6小题,共75分.(16)(本小题满分12分)在ABC中,角A,B,C的对边分别为a,b,c,已
6、知 来源:学科网()证明:a+b=2c;()求cosC的最小值.(17)(本小题满分12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH平面ABC;(II)已知EF=FB=AC=,AB=BC.求二面角的余弦值.(18)(本小题满分12分)已知数列 的前n项和Sn=3n2+8n,是等差数列,且 ()求数列的通项公式;()令 求数列的前n项和Tn.(19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人
7、猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;()“星队”两轮得分之和为X的分布列和数学期望EX.(20) (本小题满分13分)已知.(I)讨论的单调性;(II)当时,证明对于任意的成立.(21)(本小题满分14分)平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.