参考中考数学总复习专题1判断函数图象题课件.pptx

上传人(卖家):晟晟文业 文档编号:3984461 上传时间:2022-11-01 格式:PPTX 页数:29 大小:1.96MB
下载 相关 举报
参考中考数学总复习专题1判断函数图象题课件.pptx_第1页
第1页 / 共29页
参考中考数学总复习专题1判断函数图象题课件.pptx_第2页
第2页 / 共29页
参考中考数学总复习专题1判断函数图象题课件.pptx_第3页
第3页 / 共29页
参考中考数学总复习专题1判断函数图象题课件.pptx_第4页
第4页 / 共29页
参考中考数学总复习专题1判断函数图象题课件.pptx_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、专题一专题一判断函数图象题判断函数图象题题型分类突破素养训练提高解题策略指导题型概述方法指导以函数图象形式呈现的、采用选择题型考查函数的图象与性质,是安徽中考的热点,连续几年都出现在选择题的第9题或第10题,难度大,是整卷的区分度设置处.因为函数的图象与性质是重点考查内容,预计这类题仍然是2019年中考的热点.题型分类突破素养训练提高解题策略指导题型概述方法指导1.综合函数性质判断函数图象.(1)根据已知函数图象确定字母系数的取值范围,再确定所要判断的函数图象的形状,进而作出选择;(2)根据已知的两个函数图象的交点及坐标确定方程ax2+(b-1)x+c=0的根的情况,进而确定抛物线y=ax2+

2、(b-1)x+c与x轴的交点情形,从而作出正确选择.2.判断符合实际问题的函数图象.一般把握以下几点:(1)找起点:结合题中给出的自变量或函数值取值范围,在图象中找出对应的点;(2)找特殊点,就是图象中交点或转折点,说明函数在此处发生了变化;(3)根据图象趋势判断函数增减情况;(4)图象与坐标轴相交的点有一个值为0.题型分类突破素养训练提高解题策略指导题型概述方法指导3.分析动点问题判断函数图象.此类考题一般根据题目描述,确定函数值在每段函数图象上增减情况或变化的快慢.(1)当函数值随自变量增大而增大时图象呈现上升趋势,反之下降;(2)当自变量变大而函数值不变时,对应图象与横轴平行,当自变量不

3、变而函数值变化时,对应图象用铅垂线段表示.4.给出动点(面)问题的函数图象判断结论正误解决这类问题要动中找静,分段思考,求解关键是根据函数的表达方法之间的联系,先确定函数解析式,再选择图象.一般分析步骤是:(1)观察动点(面)的运动轨迹和拐点的坐标,确定每一段函数自变量的取值范围;(2)结合图象根据相关知识(图形面积、相似)求出函数表达式;(3)根据函数增减性或图象上的特殊点依据选项解决问题.题型分类突破素养训练提高题型分类突破类型一类型二类型三类型四题型分类突破素养训练提高题型分类突破类型一类型二类型三类型四类型一根据函数性质判断函数图象例1(2017安徽,9)已知抛物线y=ax2+bx+c

4、与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y=bx+ac的图象可能是()题型分类突破素养训练提高题型分类突破类型一类型二类型三类型四解析:根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,b0,交点横坐标为1,a+b+c=b,a+c=0,ac0,一次函数y=bx+ac的图象经过第一、三、四象限.答案:B题型分类突破素养训练提高题型分类突破类型一类型二类型三类型四

5、类型二结合几何图象中的动点(面)问题判断函数图象例2(2014安徽,9)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按ABC的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()题型分类突破素养训练提高题型分类突破类型一类型二类型三类型四解析:点P在AB上时,0 x3,点D到AP的距离为AD的长度,是定值4.点P在BC上时,3x5,ADBC,APB=PAD.又B=DEA=90,ABPDEA.纵观各选项,只有B选项图形符合.故选B.答案:B题型分类突破素养训练提高题型分类突破类型一类型二类型三类型四例3(2018安徽,10)如图,直线l1,

6、l2都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为 ,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于l1,l2之间分的长度和为y,则y关于x的函数图象大致为()A 题型分类突破素养训练提高题型分类突破类型一类型二类型三类型四综上所述,y关于x的函数大致如选项A所示.题型分类突破素养训练提高题型分类突破类型一类型二类型三类型四类型三分析函数图象判断结论正误例4(2013安徽,9)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边

7、EF过点C,M为EF的中点,则下列结论正确的是()A.当x=3时,ECEMC.当x增大时,ECCF的值增大D.当y增大时,BEDF的值不变题型分类突破素养训练提高题型分类突破类型一类型二类型三类型四解析:由题意,知BEC和DCF都是等腰直角三角形.观察反比例函数图象得x=3时,y=3,则反比例函数的解析式为y=.当x=3时,y=3,即BC=CD=3,C点与M点重合,则EC=EM,所以A选项错误;当y=9时,x=1,即BC=1,CD=9,所以当0 x0,对称轴位于y轴的 题型分类突破素养训练提高素养训练提高1234562.(2018山东莱芜)如图,边长为2的正ABC的边BC在直线l上,两条距离为

8、1的平行直线a和b垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记ABC夹在a和b间的部分的面积为S,则S关于t的函数图象大致为(B)题型分类突破素养训练提高素养训练提高123456解析:由ABC夹在a和b间的部分的形状可分三种情况考虑.当0t1时,ABC夹在a和b间的部分为三角形(如图题型分类突破素养训练提高素养训练提高1234563.(2018湖北黄石)如图,在RtPMN中,P=90,PM=PN,MN=6 cm,矩形ABCD中AB=2 cm,BC=10 cm,点C和点M重合,点B、C(M)、N

9、在同一直线上,令RtPMN不动,矩形ABCD沿MN所在直线以每秒1 cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与PMN重叠部分的面积为y,则y与x的大致图象是(A)题型分类突破素养训练提高素养训练提高123456解析:P=90,PM=PN,PMN=PNM=45,由题意得:CM=x,分三种情况:当0 x2时,如图1,边CD与PM交于点E,PMN=45,MEC是等腰直角三角形,此时矩形ABCD与PMN重叠部分是EMC,题型分类突破素养训练提高素养训练提高123456如图2,当D在边PN上时,过P作PFMN于F,交AD于G,N=45,CD=2,CN=CD=2,CM=6-2=

10、4,即此时x=4,当2x4时,如图3,矩形ABCD与PMN重叠部分是四边形EMCD,过E作EFMN于F,EF=MF=2,ED=CF=x-2,题型分类突破素养训练提高素养训练提高123456当4x6时,如图4,矩形ABCD与PMN重叠部分是五边形EMCGF,过E作EHMN于H,EH=MH=2,DE=CH=x-2,MN=6,CM=x,CG=CN=6-x,DF=DG=2-(6-x)=x-4,故选项A正确;故选A.题型分类突破素养训练提高素养训练提高1234564.(2018江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系

11、,下列结论中错误的是(D)A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当-2m0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2题型分类突破素养训练提高素养训练提高123456解析:当m=0或m=-2,只有一条直线与双曲线相交,当m0或m-2时,有两条直线与双曲线相交,所以两直线中总有一条与双曲线相交,则A正确;当m=1时,l1与双曲线交点(1,3),l2与双曲线交点(3,1),与侧,l2在y轴右侧,当-2m0;2a+b=0;方程ax2+bx+c=3有两个不相等的实数根;抛物线与x轴的另一个交点坐标为(-2,0

12、);若点A(m,n)在该抛物线上,则am2+bm+ca+b+c.其中正确的有(B)A.5个B.4个 C.3个D.2个题型分类突破素养训练提高素养训练提高123456abc0,b+2a=0,故错误,正确;抛物线y=ax2+bx+c(a0)与y轴的交点在3和4之间,过y轴上(0,3)点作y轴的垂线,则一定与抛物线有两个交点,方程ax2+bx+c=3有两个不相等的实数根,故正确;抛物线与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1,与x轴的另一个交点坐标为(-2,0),故正确;点A(m,n)在该抛物线上,am2+bm+ca+b+c,故正确.故选B.题型分类突破素养训练提高素养训练提高123

13、4566.(2018山东聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对宿舍进行消毒的过程中,先经过5 min的集中药物喷洒,再封闭宿舍10 min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是(C)题型分类突破素养训练提高素养训练提高123456A.经过5 min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3B.室内空气中的含药量不低于8 mg/m3且持续时

14、间达到了11 minC.当室内空气中的含药量不低于5 mg/m3且持续时间不低于35 min,才能有效杀灭某种传染病毒,此次消毒完全有效D.当室内空气中的含药量低于2 mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2 mg/m3开始,需经过59 min后,学生才能进入室内题型分类突破素养训练提高素养训练提高123456解析:利用函数图象可知:经过5 min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3,A正确;当0 x5时,y=2x,当y=8时,x=4.x=15时,y=8,室内空气中的含药量不低于8 mg/m3的持续时间达到了11 min,B正确;当0 x5时,y=2x,当y=5量不低于5 mg/m3的持续时间为21.5 min,持续时间低于35 min,此次消毒完全无效,C错误;当0 x5时,y=2x,当y=2时,x=1;当

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 中考复习 > 二轮专题
版权提示 | 免责声明

1,本文(参考中考数学总复习专题1判断函数图象题课件.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|