《配方法》教学创新课件.pptx

上传人(卖家):云出其山 文档编号:4044908 上传时间:2022-11-06 格式:PPTX 页数:21 大小:200.92KB
下载 相关 举报
《配方法》教学创新课件.pptx_第1页
第1页 / 共21页
《配方法》教学创新课件.pptx_第2页
第2页 / 共21页
《配方法》教学创新课件.pptx_第3页
第3页 / 共21页
《配方法》教学创新课件.pptx_第4页
第4页 / 共21页
《配方法》教学创新课件.pptx_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、 一元二次方程配方法第2课时 配方法学习目标,任务分解1.了解配方的概念,熟练应用完全平方公式.2.掌握用配方法解一元二次方程步骤及解决有关问题.(重点)3.探索直接开平方法和配方法之间的区别和联系.(难点)导入新课导入新课复习引入(1)9x2=1;(2)(x-2)2=2.1.用直接开平方法解下列方程:(1)x2+6x+9=5;(2)x2+6x+4=0.把两题转化成(x+n)2=p(p0)的形式,再利用开平方讲授新课讲授新课配方的方法一问题问题1.你还记得吗?填一填下列完全平方公式.(1)a2+2ab+b2=()2;(2)a2-2ab+b2=()2.a+ba-b探究交流问题问题2.填上适当的数

2、或式,使下列各等式成立.(1)x2+4x+=(x+)2(2)x2-6x+=(x-)2(3)x2+8x+=(x+)2(4)43x2-x+=(x-)2你发现了什么规律?22232342422()323二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.归纳总结想一想:x2+px+()2=(x+)22p2p配方的方法用配方法解方程二合作探究怎样解方程:x2+6x+4=0 (1)问题1 方程(1)怎样变成(x+n)2=p的形式呢?解:x2+6x+4=0 x2+6x=-4移项 x2+6x+9=-4+9两边都加上9二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.方法归纳在方程两边都加上

3、一次项系数一半的平方.注意是在二次项系数为1的前提下进行的.问题2 为什么在方程x2+6x=-4的两边加上9?加其他数行吗?不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.方程配方的方法:要点归纳 像上面这样通过配成完全平方式来解一元二次方程,叫做配方法.配方法的定义配方法解方程的基本思路把方程化为(x+n)2=p的形式,将一元二次方程降次,转化为一元一次方程求解45,x 例1 解下列方程:21810 xx;12415,415.xx解:(1)移项,得x28x=1,配方,得x28x+42=1+42,(x4)2=15由此可得即配方,得2223313,

4、2424xx 231,416x31,44x 由此可得2111,.2xx二次项系数化为1,得231,22xx 2 2213 xx;解:移项,得 2x23x=1,即移项和二次项系数化为1这两个步骤能不能交换一下呢?配方,得2224211,3xx 211.3x 因为实数的平方不会是负数,所以x取任何实数时,上式都不成立,所以原方程无实数根解:移项,得2364,xx 二次项系数化为1,得242,3xx 2 33640.xx为什么方程两边都加12?即即思考思考1:用配方法解一元二次方程时,移项时要用配方法解一元二次方程时,移项时要 注意些什么?注意些什么?思考思考2:用配方法解一元二次方程的一般步骤用配

5、方法解一元二次方程的一般步骤.移项时需注意改变符号移项时需注意改变符号.移项(移项(将常数项放置右侧,其余项放将常数项放置右侧,其余项放置左侧置左侧),二次项系数化为),二次项系数化为1;左边配成完全平方式;左边配成完全平方式;左边写成完全平方形式;左边写成完全平方形式;降次;降次;解一次方程解一次方程.一般地,如果一个一元二次方程通过配方转化成一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p.当当p0时时,则则 ,方程的两个根为方程的两个根为当当p=0时时,则则(x+n)2=0,x+n=0,开平方得方程的两开平方得方程的两个根为个根为 x1=x2=-n.当当p0时时,则方程则方程

6、(x+n)2=p无实数根无实数根.xnp 12,xnpxnp 规律总结例2.试用配方法说明:不论k取何实数,多项式 k24k5 的值必定大于零.解:k24k5=k24k41=(k2)21因为(因为(k2)20,所以(,所以(k2)211.所以k24k5的值必定大于零.配方法的应用二例3.若a,b,c为ABC的三边长,且 试判断ABC的形状.解:对原式配方,得 由代数式的性质可知 ,054322cba,05,04,0322cba,543cba,所以,ABC为直角三角形.,02558622cbbaa,543222222cba1.方程2x2-3m-x+m2+2=0有一根为x=0,则m的值为()A.1

7、 B.1 C.1或2 D.1或-2练一练C1.解下列方程:(1)x2+4x-9=2x-11;(;(2)x(x+4)=8x+12;(3)4x2-6x-3=0;(4)3x2+6x-9=0.解:x2+2x+2=0,(x+1)2=-1.此方程无解;解:x2-4x-12=0,(x-2)2=16.x1=6,x2=-2;233024xx解:,2321().416x12321321,44xx;解:x2+2x-3=0,(x+1)2=4.x1=-3,x2=1.当堂练习当堂练习2.利用配方法证明:不论x取何值,代数式x2x1的值总是负数,并求出它的最大值.解:x2x1=(x2+x+)+1所以x2x1的值必定小于零.

8、141421()0,2x+213(),24=x+213()0,24x+当当 时,时,x2x1有最大值12x=3.44.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?解:设道路的宽为xm,根据题意得(35-x)(26-x)=850,整理得x2-61x+60=0.解得x1=60(不合题意,舍去),x2=1.答:道路的宽为1m.课堂小结课堂小结配方法定义通过配成完全平方形式解一元二次方程的方法.步骤一移常数项;二配方配上 ;三写成(x+n)2=p(p 0);四直接开平方法解方程.特别提醒:在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应用求代数式的最值或证明22)一次项系数(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 人教版(2024) > 九年级上册
版权提示 | 免责声明

1,本文(《配方法》教学创新课件.pptx)为本站会员(云出其山)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|