1、 一元二次方程0101理解一元二次理解一元二次方程的概念方程的概念.(难点)(难点)0303理解并灵活运理解并灵活运用一元二次方用一元二次方程概念解决有程概念解决有关问题关问题.(.(重点)重点)0202理解一元二次理解一元二次方程的概念方程的概念.(难点)(难点)学习目标学习目标复习导入复习导入1.下列式子哪些是方程?2+6=82x+35x+6=22x+3y=8924xx-518没有未知数代数式一元一次方程二元一次方程不等式分式方程复习导入复习导入2.什么叫方程?我们学过哪些方程?含有未知数的等式叫做方程.我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.
2、3.什么叫一元一次方程?含有一个未知数,且未知数的次数是1的整式方程叫做一元一次方程.想一想:什么叫一元二次方程呢?问题1 有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周凸出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?请根据题意列出方程.100cm50cmx3600cm2解:设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,根据方盒的底面积为3600cm2,得2753500 xx整理,得2430014000 xx化简,得该方程中未知数的个数和最高次数各是多少?问
3、题引入问题引入 方程、都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点:都是整式方程;只含一个未知数;未知数的最高次数是2.2560 xx2753500 xxu一元二次方程的概念一元二次方程的概念 像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程.u一元二次方程的一般形式是一元二次方程的一般形式是ax2+bx+c=0 (a0)二次项系数一次项系数常数项知识要点知识要点ax2+bx+c=0强调:“=”左边最多有三项,一次项、常数项可不出现,但二次项必须有;“=”左边按未知数 x 的降幂排列;“=”右
4、边必须整理为0.为什么一般形式中ax2+bx+c=0要限制a0,b、c 可以为零吗?当 a=0 时bxc=0 当 a 0,b=0时,ax2c=0 当 a 0,c=0时,ax2bx=0 当 a 0,b=c=0时,ax2=0 总结:只要满足a 0,b,c 可以为任意实数.想一想想一想222221A.0B.350C.(1)(2)0D.0 xxxyyxxxaxbxc例1 下列选项中,关于x的一元二次方程的是()C不是整式方程含两个未知数化简整理成x2-3x+2=0少了限制条件a0提示 判断一个方程是不是一元二次方程,首先看是不是整式方程;如是再进一步化简整理后再作判断.典例精析典例精析例2:a为何值时
5、,下列方程为一元二次方程?(1)ax2-x=2x2(2)(a-1)x a +1 -2x-7=0.解:(1)将方程式转化为一般形式,得(a-2)x2-x=0,所以当a-20,即a2时,原方程是一元二次方程;(2)由 a +1=2,且a-1 0知,当a=-1时,原方程是一元二次方程.方法总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值 例3:将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数.解:去括号,得3x2-3x=5x+10.移项、合并同类项,得一元二次方程的一般
6、形式3x2-8x-10=0.其中二次项是3x2,系数是3;一次项是-8x,系数是-8;常数项是-10.系数和项均包含前面的符号.注意u一元二次方程的根 使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫做根).练一练:下面哪些数是方程 x2 x 6=0 的解?-4,-3,-2,-1,0,1,2,3,4解:3和-2.你注意到了吗?一元二次方程可能不止一个根.例4.:已知a是方程 x2+2x2=0 的一个实数根,求 2a2+4a+2017的值.解:由题意得2220aa 即222aa 2242017aa 2 220172021 22(2)2017aa 方法总结:已知解求代数式的值,先把
7、已知解代入,再注意观察,有时需运用到整体思想,求解时,将所求代数式的一部分看作一个整体,再用整体思想代入求值 1.下列哪些是一元二次方程?3x+2=5x-2x2=0(x+3)(2x-4)=x23y2=(3y+1)(y-2)x2=x3+x2-13x2=5x-1当堂练习当堂练习2.填空:方程一般形式二次项系数一次项系数常数项2320 xx2312 3yy 245x(2)(34)3xx2320 xx232 310yy-21313-540-53-22450 x 23250 xx3.已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值.解:由题意得把x=3代入方程x2+ax+a=0,得32+3a+a=09+4a=094a 4a=-9一元二次方程概念 是整式方程;含一个未知数;最高次数是2.一般形式ax2+bx+c=0 (a 0)其中(a0)是一元二次方程的必要条件;确定一元二次方程的二次项系数、一次项系数及常数项要先化为一般式.根使方程左右两边相等的未知数的值.课堂小结课堂小结