1、7.4 平行线的性质第七章 平行线的证明导入新课讲授新课当堂练习课堂小结学习目标1.理解并掌握平行线的性质公理和定理(重点)2.能熟练运用平行线的性质进行简单的推理证明(难点)两直线平行 1.同位角相等2.内错角相等3.同旁内角互补问题 平行线的判定方法是什么?思考 反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?导入新课导入新课回顾与思考讲授新课讲授新课平行线的性质合作探究问题1:根据“两条平行线被第三条直线所截,同位角相等”.你能作出相关的图形吗?ABCDEFMN12问题2:你能根据所作的图形写出已知、求证吗?两条平行线被第三条直线所截,同位角相等.已知,如图,直线ABC
2、D,1和2是直线AB、CD被直线EF截出的同位角.求证:1=2.文字语言符号语言ABCDEFMN12问题3:你能说说证明的思路吗?ABCDEFMNGH12证明:假设1 2,那么我们可以过点M作直线GH,使EMH=2,如图所示.根据“同位角相等,两直线平行”,可知GH CD.又因为AB CD,这样经过点M存在两条直线AB和GH都与直线CD平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”相矛盾.这说明1 2的假设不成立,所以1=2.如果1 2,AB与CD的位置关系会怎样呢?一般地,平行线具有如下性质:定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.
3、b12ac1=2 (两直线平行,同位角相等)ab(已知)应用格式:总结归纳议一议利用上述定理,你能证明哪些熟悉的结论?两直线平行,内错角相等.两直线平行,同旁内角互补.尝试来证明一下定理2:两条直线被第三条直线所截,内错角相等.12bc3a已知:直线ab,1和2是直线a,b被直线c截出的内错角.求证:1=2.证明:ab(已知),23(两条直线平行,同位角相等)13(对顶角相等),1=2(等量代换)定理3:两条直线被第三条直线所截,同旁内角互补12bc3a已知:直线ab,1和2是直线a,b被直线c截出的同旁内角.求证:1+2=180.证明:ab(已知)23(两条直线平行,同位角相等)1+3=18
4、0(平角等于180)1+2=180 (等量代换).证明:ab,1=2,同理2=3,1=3,ac.定理:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.已知:如图,直线a,b,c被直线d所截,且ab,cb.求证:ac.平行线的性质公理:两直线平行,同位角相等.ab,1=2.性质定理1:两直线平行,内错角相等.ab,1=2.性质定理2:两直线平行,同旁内角互补.ab,1+2=1800.abc21abc12abc12w这里的结论,以后可以直接运用.总结归纳归纳总结证明一个命题的一般步骤:(1)弄清题设和结论;(2)根据题意画出相应的图形;(3)根据题设和结论写出已知,求证;(4)分析证明思
5、路,写出证明过程.典例精析ADCB例1:如图所示,已知四边形ABCD 中,ABCD,ADBC,试问A与C,B与D 的大小关系如何?解:A=C,B=D理由:ABCD (已知)B+C=180(两直线平行,同旁内角互补)又 ADBC (已知)C+D=180(两直线平行,同旁内角互补)B=D (同角的补角相等 )同理 A=CADCB例2:已知,如图,ABCD,B=D,求证:ADBC.证法一:ABDC(已知)B+C=180 (两直线平行,同旁内角互补)B=D(已知)D+C=180(等量代换)ADBC(同旁内角互补,两直线平行)ADCB例2:已知,如图,ABCD,B=D,求证:ADBC.证法二:如图,延长
6、BA(构造一组同位角)ABCD(已知)1=D(两直线平行,内错角相等)B=D(已知)1=B(等量代换)ADBC(同位角相等,两直线平行)1ADCB例2:已知,如图,ABCD,B=D,求证:ADBC.证法三:如图,连接BD(构造一组内错角)ABCD(已知)1=4(两直线平行,内错角相等)B=D(已知)B1=D4(等式的性质)2=3 ADBC(内错角相等,两直线平行)1234两直线平行 同位角相等内错角相等同旁内角互补平行线的判定平行线的性质线的关系角的关系性质角的关系线的关系判定讨论:平行线三个性质的条件是什么?结论是什么?它与判定有什么区别?(分组讨论)平行线的判定与性质素材:探索平行线的性质
7、(播放状态下,点击画面操作)探索平行线的性质.swf双击播放当堂练习当堂练习1.下列图形中,由ABCD,能得到1=2的是()B解:A=D.理由:ABDE()A=_ ()ACDF()D=_()A=D()2.如图1,若ABDE,ACDF,请说出A和D之 间的数量关系,并说明理由.PFCEBAD 图已知CPE两直线平行,同位角相等已知 CPE 两直线平行,同位角相等等量代换解:A+D=180o.理由:ABDE()A=_()ACDF()D+_=180o()A+D=180o()如图2,若ABDE,ACDF,请说出A和D之间的数量关系,并说明理由.图2FCEBADP已知CPD两直线平行,同位角相等已知CP
8、D两直线平行,同旁内角互补等量代换3.如图,已知平行线AB、CD被直线AE所截 (1)从 1=110o可以知道2 是多少度,为什么?(2)从1=110o可以知道 3是多少度,为什么?(3)从 1=110o可以知道4 是多少度,为什么?23E14ABDC解:(1)2=110o 两直线行,内错角相等;(2)3=110o 两直线平行,同位角相等;(3)4=70o 两直线平行,同旁内角互补.4.如图,一条公路两次拐弯前后两条路互相平行.第 一次拐的B是142o,第二次拐的C是多少度?为什么?解:C=142o 两直线平行,内错角相等.BC5.如图,是一块梯形铁片的残余部分,量得A=100,B=115,梯
9、形的另外两个角分别是多少度?ABCD解:因为梯形上、下底互相平行,所以 A与D互补,B与C互补.所以梯形的另外两个角分别是80、65.于是D=180-A=180-100=80C=180-B=180-115=656.如图,在ABC中,CEAB于点E,DFAB于点F,AC/ED,CE是ACB的平分线,则EDF=BDF,请说明理由.解:因为CEAB,DFAB所以DF/EC所以BDF=1,EDF=3因为ED/AC,所以3=2所以EDF=2又CE平分ACB所以1=2所以BDF=EDF.同位角相等内错角相等同旁内角互补两直线平行判定性质已知得到得到已知课堂小结课堂小结小结与复习第六章 数据的分析知识构架知
10、识梳理当堂练习课后作业数据的分析数据的一般水平或集中趋势数据的离散程度或波动大小平均数、加权平均数中位数众数方差计算公式知识构架知识构架数据的代表一平均数定义一组数据的平均值称为这组数据的平均数算术平均数一般地,如果有n个数x1,x2,xn,那么 叫做这n个数的平均数加权平均数 一般地,如果在n个数x1,x2,xn中,x1出现f1次,x2出现f2次,xk出现fk次(其中f1f2fkn),那么,叫做x1,x2,xk这k个数的加权平均数,其中f1,f2,fk叫做x1,x2,xk的权,f1f2fkn)(121nxxxnx)(12211kkfxfxfxnx知识梳理知识梳理最多中间位置的数两个数据的平均
11、数中位数定义将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于_就是这组数据的中位数,如果数据的个数是偶数,则中间_就是这组数据的中位数防错提醒 确定中位数时,一定要注意先把整组数据按照大小顺序排列,再确定众数定义一组数据中出现次数_的数据叫做这组数据的众数防错提醒(1)一组数据中众数不一定只有一个;(2)当一组数据中出现异常值时,其平均数往往不能正确反映这组数据的集中趋势,就应考虑用中位数或众数来分析(2)条形统计图中,(3)扇形统计图中,(1)折线统计图中,众数:同一水平线上出现次数最多的数据;中位数:从上到下(或从下到上)找中间点所对的数;平均数:可以用中位数与
12、众数估测平均数众数:是柱子最高的数据;中位数:从左到右(或从右到左)找中间数;平均数:可以用中位数与众数估测平均数众数:为扇形面积最大的数据;中位数:按顺序,看相应百分比,第50%与51%两个数据的平均数;平均数:可以利用加权平均数进行计算 从统计图中分析数据二数据的波动三平均数 大表示波动的量定义意义方差设有n个数据x1,x2,x3,xn,各数据与它们的_的差的平方分别是(x1x)2,(x2x)2,(xnx)2,我们用它们的平均数,即用_来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作s2方差越大,数据的波动越_,反之也成立222121()()()nxxxxxxn标准差就是方差的算术
13、平方根1.下表是王勇家去年1-6月份的用水情况:则王勇家去年1-6月份的月平均用水量为()A3吨 B3.5吨 C4吨 D4.5吨 C当堂练习当堂练习解析:(3+4+3.5+3+4.5+6)6=246=4(吨)故选C2.某班体育委员统计了全班45名同学一周的体育锻炼时间,并绘制了如图所示的折线统计图,则在体育锻炼时间这组数据中,众数和中位数分别是()A18,18 B9,9 C9,10 D18,9 B解析:由图可知,锻炼9小时的有18人,所以9在这组数中出现18次为最多,所以众数是9把数据从小到大排列,中位数是第23位数,第23位是9,所以中位数是93.要反映台州市某一周每天的最高气温的变化趋势,
14、宜采用()A.条形统计图 B.扇形统计图C.折线统计图 D.频数分布直方图 C4.如图是某农户2015年收入情况的扇形统计图,已知他2015年的总收入为5万元,则他的打工收入是()A.0.75万元 B.1.25万元C.1.75万元 D.2万元B解析:5万元25%=1.25万元.5.我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分 中位数 方
15、差合格率优秀率七年级6.7m3.4190%n八年级7.17.51.6980%10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好请你给出两条支持八年级队成绩好的理由(1)解:依题意,得 解得31+6a+71+81+91+10b=6.710a+1+1+1+b=9010或1+a+1+1+1+b=10a=5b=1(1)请依据图表中的数据,求a,b的值;(2)m6,n20%.(2)直接写出表中m,n的值;队别平均分 中位数 方差合格率优秀率七年级6.7m3.4190%
16、n八年级7.17.51.6980%10%(3)八年级队平均分高于七年级队;八年级队的成绩比七年级队稳定;八年级队的成绩集中在中上游,所以支持八年级队成绩好(注:任说两条即可)(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好请你给出两条支持八年级队成绩好的理由6.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲70乙1甲、乙射击成绩折线图(1)请补全上述图表(请直接在表中填空和补全折线图);
17、(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?解:(1)根据折线统计图,得乙的射击成绩为2,4,6,8,7,7,8,9,9,10,平均数为 (环)中位数为7.5环,方差为 (27)2(47)2(67)2(87)2(77)2(77)2(87)2(97)2(97)2(107)25.4.根据折线统计图,知甲除第八次外的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7,则甲第八次成绩为70(967627789)9(环),所以甲的射击成绩为2,6,6,7,7,7,8,9,9,9,71010998778642101中位数为7环,平均数为(2667778999)7(环),方差为(27)2(67)2(67)2(77)2(77)2(77)2(87)2(97)2(97)2(97)24.补全图表如下甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7740乙77.55.41甲、乙射击成绩折线图(2)甲胜出理由:因为甲的方差小于乙的方差(3)略.见章末练习课后作业课后作业