1、第14讲线段、角、相交线和平行线1线段与直线(1)两个基本事实:直线的基本事实:两点确定一条直线;线段的基本事实:两点之间线段最短(2)两点间距离:连接两点的线段,叫做两点之间的距离(3)线段的中点:如图,点C把线段AB分成相等的两段AC与BC,点C叫做线段AB的中点,即ACBCAB.(4)线段的和与差:如图,点C是线段AB上一点,则ACBCAB,ACABBC,BCABAC.2角及角平分线 (1)1周角_2_平角_4_直角 360 ,1_60,160_. (2)小于直角的角叫做_锐角_;大于直角而小于平角的角叫做钝角;度数是90的角叫做直角 (3)余角:两个角的和等于90时,称这两个角互为余角
2、;同角(或等角)的余角_相等_ 补角:两个角的和等于180时,称这两个角互为补角;同角(或等角)的补角相等 (4)角平分线:从一个角的顶点引出一条射线,把这个角平分成相等的两个角,这条射线叫这个角的角平分线;角平分线上的点,到角两边的距离_相等_;到角两边距离相等的点在这个角的角平分线上。3相交线(如图) (1)邻补角:在一条直线上且互补的一对角,如:1与4,1与2,6与7等 性质:邻补角和为180. 对顶角:相交线中相对的一组角,如:1与3,2与4,5与7,6与8. 性质:对顶角相等 (2)三线八角: 同位角有4与8,1与5,3与7,2与6; 内错角有3与5,2与8; 同旁内角有3与8,2与
3、5.(3)垂线定义:两直线相交所组成的四个角中有一个是直角时,我们称这两条直线互相垂直_,其中一条直线叫另一条直线的_垂线,它们的交点叫垂足; 垂线基本事实:在同一平面内,经过一点有且只有一条直线与已知直线垂直; 垂线段性质:连接直线外一点与直线上各点的所有线段中 垂线段 最短; 点到直线的距离:直线外一点到这条直线的垂线段 ,叫做点到直线的距离; 垂直平分线:垂直于一条线段并且平分这条线段的直线,叫做这条线段的垂直平分线;垂直平分线上的点到线段两端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上4平行线(1)在同一平面内,不相交的两条直线叫平行线;(2)平行线公理:经过直线外
4、一点 有且只有一条直线与已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也平行;(3)平行线判定与性质:判定定理性质定理考点1: 几何图形基本知识【例题1】若C、D是线段AB上两点,D是线段AC的中点,AB=10cm,BC=4cm,则AD的长是_ cm【分析】由AB=10cm,BC=4cm,可求出AC=ABBC=6cm,再由点D是AC的中点,则可求得AD的长解析:如图:AB=10cm,BC=4cm,AC=ABBC=6cm,又点D是AC的中点,AD=AC=3cm,故答案为:3 【同步练】已知线段AB=10cm,线段BC=4cm,则线段AC的长是_cm解:(1)如图1,点B在点A
5、、C的中间时, ,AC=AB+BC=10+4=14(cm)(2)如图2,点C在点A、B的中间时, ,AC=ABBC=104=6(cm)线段AC的长是14或6cm故答案为:14或6考点2: 平行线的判定【例题2】一副直角三角板叠放如图所示,现将含45角的三角板ADE固定不动,把含30角的三角板ABC绕顶点A顺时针旋转(BAD且0180),使两块三角板至少有一组边平行(1)如图1,15时,DEBC;(2)请你在图2、图3中各画一种符合要求的图形,并写出对应的的度数和平行线段图1图2图3【解答】解:当60时,BCDA.BAC30,60,DACC90.DACC180.BCDA.当105时,BCEA.1
6、05,DAE45,EAB60.B60,EABB.BCEA.归纳:已知角的大小,判断两直线平行时:(1)先看已知角是哪两条直线被哪条直线所截得到的,是一对什么角;(2)再看是否满足两直线平行的判定条件,若满足,则平行;否则不平行考点3:平行线性质【例题3】(2018重庆)如图,ABCD,EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分FGD若EFG=90,E=35,求EFB的度数【分析】依据三角形内角和定理可得FGH=55,再根据GE平分FGD,ABCD,即可得到FHG=HGD=FGH=55,再根据FHG是EFH的外角,即可得出EFB=5535=20【解答】解:EFG=90
7、,E=35,FGH=55,GE平分FGD,ABCD,FHG=HGD=FGH=55,FHG是EFH的外角,EFB=5535=20归纳:对于利用平行线性质求角度的问题:(1)通过观察题图和已知条件得出已知和所求的角是否可以直接通过平行线的哪些性质得出;(2)结合两角互余、两角互补、三角形内角和定理、三角形的内外角关系进行求解;(3)若题中提到角平分线,则在解题过程中注意角之间的等量代换最后根据角之间的等量关系即可求解一、选择题:1. (2018邵阳)如图所示,直线AB,CD相交于点O,已知AOD=160,则BOC的大小为()A20B60C70D160【答案】D【解答】AOD=160,BOC=AOD
8、=160,故选:D2. (2019湖北十堰3分)如图,直线ab,直线ABAC,若150,则2()A50B45C40D30【答案】C【解答】解:直线ABAC,2+390150,390140,直线ab,1340,故选:C3. (2018孝感)如图,直线ADBC,若1=42,BAC=78,则2的度数为()A42B50C60D68【答案】C【解答】解:1=42,BAC=78,ABC=60,又ADBC,2=ABC=60,故选:C4. (2018铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A1cmB3cmC5cm或3cmD1c
9、m或3cm【答案】C【解答】解:当直线c在a、b之间时,a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,a与c的距离=41=3(cm);当直线c不在a、b之间时,a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm故选:C5. (2019河北省3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A代表FECB代表同位角C代表EFCD代表AB【答案】C证明:延长BE交CD于点F,则BECEFC+C(三角形的外角等于与它不相邻两个内角之和)又BECB+C,
10、得BEFC故ABCD(内错角相等,两直线平行)二、填空题:6. (2019广西贵港3分)如图,直线ab,直线m与a,b均相交,若138,则2【答案】142【解答】解:如图,ab,23,1+3180,218038142故答案为1427. (2018通辽)如图,AOB的一边OA为平面镜,AOB=3745,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则DEB的度数是 【答案】7530(或75.5)【解答】解:CDOB,ADC=AOB,EDO=CDA,EDO=AOB=3745,EDB=AOB+EDO=23745=7530(或75.5),故答案为7530(或75.5
11、)8. (2019甘肃3分)如图,将一块含有30的直角三角板的顶点放在直尺的一边上,若148,那么2的度数是()A48B78C92D102【答案】D【解答】解:将一块含有30的直角三角板的顶点放在直尺的一边上,148,231804830102故选:D9. 如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒点P、Q分别从点C、点B同时出发在直线上运动,则经过 秒时线段PQ的长为5厘米【答案】或1或3或9【解答】解:设运动时间为t秒如果点P向左、点Q向右运动,由题意,得:t+2t=54,解
12、得t=;点P、Q都向右运动,由题意,得:2tt=54,解得t=1;点P、Q都向左运动,由题意,得:2tt=5+4,解得t=9点P向右、点Q向左运动,由题意,得:2t4+t=5,解得t=3综上所述,经过或1或3秒时线段PQ的长为5厘米故答案为或1或3或9三、解答题:10. 已知=76,=4131,求:(1)的余角;(2)的2倍与的的差 【分析】(1)根据互为余角的两个角的和为90度可得的余角=90,将=4131代入计算即可;(2)将=76,=4131代入2,然后计算即可解析:(1)的余角=90=904131=4829;(2)=76,=4131,2=2764131=15220453011. 已知线
13、段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长【解答】解:如图1所示,AP=2PB,AB=6,PB=AB=6=2,AP=AB=6=4;点Q为PB的中点,PQ=QB=PB=2=1;AQ=AP+PQ=4+1=5如图2所示,AP=2PB,AB=6,AB=BP=6,点Q为PB的中点,BQ=3,AQ=AB+BQ=6+3=9故AQ的长度为5或912. 有三个海岛A,B,C,其中C岛在A岛的北偏东60方向(1)如图1,若C岛在B岛的南偏东25方向,求BCA的度数;(2)如图2,若C岛在B岛北偏西50方向上,求C岛看A,B两岛的视角ACB的度数图1图2【解答】解:(1)
14、根据题意,得DAC60,MBC25.EGAD,ACGDAC60.BMAD,BMEG.ECBCBM25.BCA180ACGECB95.(2)过点C作CMAD,ACMDAC60.ADBE,BECM.BCMCBE50.ACBACMBCM110.13. 如图,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(MON90) (1)将图中的三角板绕点O旋转一定的角度得图,使边OM恰好平分BOC,问:ON是否平分AOC?请说明理由;(2)将图中的三角板绕点O旋转一定的角度得图,使边ON在BOC的内部,如果BOC60,则BOM与NOC之间存在怎样的数量关系? 请说明理由【解析】解:(1)ON平分
15、AOC理由如下: MON90 BOM+AON90MOC+NOC90又 OM平分BOC BOMMOC AONNOC ON平分AOC(2) CON+NOB60又 BOM+NOB90 BOMNOC+3014. 如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD(1)求点C,D的坐标;(2)若在y轴上存在点 M,连接MA,MB,使SMAB=S平行四边形ABDC,求出点M的坐标(3)若点P在直线BD上运动,连接PC,PO若P在线段BD之间时(不与B,D重合),求SCDP+SB
16、OP的取值范围;若P在直线BD上运动,请直接写出CPO、DCP、BOP的数量关系【解答】(1)由平移可知:C(0,2),D(4,2);(2)AB=4,CO=2,S平行四边形ABOC=ABCO=42=8,设M坐标为(0,m),4|m|=8,解得m=4M点的坐标为(0,4)或(0,4);(3)S梯形OCDB=(3+4)2=7,当点P运动到点B时,SPOC最小,SPOC的最小值=32=3,SCDP+SBOP4,当点P运动到点D时,SPOC最大,SPOC的最大值=42=4,SCDP+SBOP3,所以3SCDP+SBOP4;当点P在BD上,如图1,作PECD,CDAB,CDPEAB,DCP=EPC,BOP=EPO,DCP+BOP=EPC+EPO=CPO;当点P在线段BD的延长线上时,如图2,作PECD,CDAB,CDPEAB,DCP=EPC,BOP=EPO,EPOEPC=BOPDCP,BOPDCP=CPO;同理可得当点P在线段DB的延长线上时,DCPBOP=CPO