对数函数及性质教学课件.ppt

上传人(卖家):晟晟文业 文档编号:4177507 上传时间:2022-11-17 格式:PPT 页数:38 大小:1.28MB
下载 相关 举报
对数函数及性质教学课件.ppt_第1页
第1页 / 共38页
对数函数及性质教学课件.ppt_第2页
第2页 / 共38页
对数函数及性质教学课件.ppt_第3页
第3页 / 共38页
对数函数及性质教学课件.ppt_第4页
第4页 / 共38页
对数函数及性质教学课件.ppt_第5页
第5页 / 共38页
点击查看更多>>
资源描述

1、2.2.2 2.2.2 对数函数对数函数及其性质及其性质 北京青年报曾报道:北京青年报曾报道:潮潮白河底挖出冰冻古树白河底挖出冰冻古树可能是可能是山杨,专家经过检测可推断山杨,专家经过检测可推断树的埋藏时间树的埋藏时间 你知道专家是根据什么你知道专家是根据什么推断数的埋藏时间的吗?推断数的埋藏时间的吗?湖南长沙马王堆汉墓女尸湖南长沙马王堆汉墓女尸出土时碳出土时碳1414的残余量约占原始的残余量约占原始含量的含量的76767 7 试推算马王堆古墓的年试推算马王堆古墓的年代代 人们经过长期实践,获得了生物体内碳人们经过长期实践,获得了生物体内碳14含量含量P与死与死亡年数亡年数t之间的关系:之间的

2、关系:.215730tP 考古学家一般通过提取附着在出土文物古遗址上考古学家一般通过提取附着在出土文物古遗址上死亡生物体的残留物,利用(死亡生物体的残留物,利用(*)式估算出土文物或古遗)式估算出土文物或古遗址的年代址的年代 由指数与对数的关系,此指数式写成对数式是:由指数与对数的关系,此指数式写成对数式是:.log573021Pt(*)现在,你能推算出现在,你能推算出马王堆古墓的年代吗?马王堆古墓的年代吗?(P=76P=767 7)碳14的含量P0.50.30.10.010.001生物死亡年数t 如果碳如果碳14的含量是下表中的数值,根据关的含量是下表中的数值,根据关系:系:试用计算器填写下

3、表试用计算器填写下表Pt573021log 根据问题的实际意义可知,对于每一个碳根据问题的实际意义可知,对于每一个碳14含量含量P,通过对应关系,通过对应关系 ,都有一个确,都有一个确定的年代定的年代t与它对应,所以,与它对应,所以,t是是P的函数的函数Pt573021log 一般地,把函数一般地,把函数 叫做对数函数,其中叫做对数函数,其中x是自变量,函数的定义是自变量,函数的定义域是域是 ,01,0logaaxya且 思考思考:(1)为什么规定)为什么规定?(2)为什么对数函数的定义域是)为什么对数函数的定义域是?10aa且,0例例1:求下列函数的定义域:求下列函数的定义域:2log1xy

4、a xya4log20 xx定义域:定义域:定义域:定义域:4xx画函数图像的步骤是:画函数图像的步骤是:列表描点连线画出函数画出函数 与与 的图像的图像xy2logxy21log问:(1)这两个函数的图像有什么关系?(2)可否利用 的图象画出 的图象?xy2logxy21log0 11 (1)在同一坐标系中画出:)在同一坐标系中画出:的图象的图象.xyxyxyxy313212loglogloglog、(2)你能否猜测)你能否猜测 与与 分别与分别与哪个图象相似哪个图象相似.xy4logxy41logxyxy2logxy3logxy31logxy21log 选取底数选取底数a()的若干个不)的

5、若干个不同的值,在同一平面直角坐标系内作出相应同的值,在同一平面直角坐标系内作出相应的对数函数的图象的对数函数的图象10aa且 问题:观察图象,你能发现它们有哪些问题:观察图象,你能发现它们有哪些共同特征?有什么不同特征?共同特征?有什么不同特征?问题:观察图象,你能发现它们有哪些问题:观察图象,你能发现它们有哪些共同特征?有什么不同特征?共同特征?有什么不同特征?yxy=logaxy=logax图象图象性质性质a10a1xy1oa 11 a1o 定义域定义域:(0,+x=1时时y=0 ;0 x1时时,y1时时,y00 x0 x1时时,y0在在(0,+上是增函数上是增函数 在在(0,+上是减函

6、数上是减函数值域:值域:R三三.对数函数的性质对数函数的性质:例例2小结小结图象特征图象特征 (1)完全分布在在)完全分布在在y轴轴右侧;右侧;(2)向上下无限延伸)向上下无限延伸 并并无限向无限向y轴靠近,但永不相轴靠近,但永不相交交;(3)过定点()过定点(1,0);(4)在直线)在直线 x=1 两侧两侧的两部分分别位于的两部分分别位于x轴的轴的上方、下方;上方、下方;(5)从左至右观察图)从左至右观察图象象,a1时时 呈上升趋势,呈上升趋势,0 a1时呈下降趋势。时呈下降趋势。例例2:比较下列各题中两个值的大小:比较下列各题中两个值的大小:5.8log4.3log22,(1);7.2lo

7、g8.1log3.03.0,(2);)1,0(9.5log1.5logaaaa且,(3)时,1a时,10 a例9:溶液酸碱度的测量.溶液酸碱度是通过PH刻画的.PH的计算公式为PH=。,HH升单位是摩尔的浓度表示溶液中氢离子其中/,lg(1)根据对数函数的性质及上述PH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度这间的变化关系;(2)已知纯净水中氢离子的浓度为PH。,H计算纯净水的升摩尔/107 对数函数对数函数概念概念数形结合数形结合图象图象性质性质两直线的位置关系两直线的位置关系 直线与直线的位置关系:直线与直线的位置关系:(1)有斜率有斜率的两直线的两直线l1:y=k1x+b1;l2:

8、y=k2x+b2 l1l2 k1=k2且且b1b2;l1l2 k1k2=-1;l1与与l2相交相交 k1k2 l1与与l2重合重合 k1=k2且且b1=b2。(2)一般式的直线一般式的直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0 l1l2 A1B2-A2B1=0 且且 B1C2-B2C10 l1l2 A1A2+B1B2=0 l1与与l2相交相交 A1B2-A2B10 l1与与l2重合重合 A1B2-A2B1=0且且B1C2-B2C1=0。到角与夹角:到角与夹角:两条直线两条直线l1,l2相交构成四个角,它们是两对对顶角,把相交构成四个角,它们是两对对顶角,把l1依逆时针方

9、向旋转到与依逆时针方向旋转到与l2重合时所转的角,叫做重合时所转的角,叫做l1到到l2的角的角,l1到到l2的角的范围是的角的范围是(0,)l1与与l2所成的角是指不大所成的角是指不大于直角的角,简称于直角的角,简称夹角夹角.到角的公式是到角的公式是 ,夹,夹角公式是角公式是 ,以上公式适用于两直线斜率都,以上公式适用于两直线斜率都存在,且存在,且k1k2-1,若不存在,由数形结合法处理,若不存在,由数形结合法处理.21121tankkk-k21121tankkk-k点与直线的位置关系:点与直线的位置关系:设点设点P(x0,y0),直线直线L:Ax+By+C=0上,则有上,则有(1)点在直线上

10、:)点在直线上:Ax0+By0+C=0;(2)点不在直线上,则有)点不在直线上,则有Ax0+By0+C0(3)点)点 到直线到直线 的距离为:的距离为:),(00yxP0:CByAxl2200BACByAxd(4).两条平行线两条平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0的的距离为:距离为:2221BACCd注意:注意:1、两直线的位置关系判断时,、两直线的位置关系判断时,要注意斜率不存在要注意斜率不存在 的情况的情况2、注意、注意“到角到角”与与“夹角夹角”的区分。的区分。3、在运用公式求平行直线间的距离、在运用公式求平行直线间的距离 时,一定要时,一定要把把x、y前面的系

11、数化成相等。前面的系数化成相等。2221BACCd2.若直线若直线l1:mx+2y+6=0和直线和直线l2:x+(m-1)y+m2-1=0平行但不平行但不重合,则重合,则m的值是的值是_.1.已知点已知点P(1,2),直线,直线l:2x+y-1=0,则,则 (1)过点过点P且与直线且与直线l平行的直线方程为平行的直线方程为_,(2)过点过点P且与直线且与直线l垂直的直线方程为垂直的直线方程为_;(3)过点过点P且直线且直线l夹角为夹角为45的直线方程为的直线方程为_;(4)点点P到直线到直线L的距离为的距离为_,(5)直线直线L与直线与直线4x+2y-3=0的距离为的距离为_课前热身课前热身2

12、x+y-4=0 x-2y+3=03x+y-5=0或或x+3y-7=0553105-11.已知两直线已知两直线l1:mx+8y+n=0和和l2:2x+my-1=0.试确定试确定 m、n的值,使的值,使l1与与l2相交于点相交于点P(m,-1);l1l2;l1l2,且,且l1在在y轴上的截距为轴上的截距为-1.【解题回顾解题回顾】若直线若直线l1、l2的方程分别为的方程分别为A1x+B1y+C1=0和和A2x+B2y+C2=0,则,则l1l2的必要条件是的必要条件是A1B2-A2B1=0,而,而l1l2的充要条件是的充要条件是A1A2+B1B2=0.解题中为避免讨论,常依解题中为避免讨论,常依据上

13、面结论去操作据上面结论去操作.类型之一两条直线位置关系的判定与运用例例2、已知直线、已知直线l经过点经过点P(3,1),),且被两平行且被两平行直线直线l1:x+y+1=0和和l2:x+y+6=0截得的线段之长截得的线段之长为为5。求直线。求直线l的方程。的方程。解解:若直线若直线l的斜率不存在,则的斜率不存在,则直线直线l的方程为的方程为x=3,此时与此时与l1、l2的交点分别是的交点分别是A1(3,-4)和)和B1(3,-9),),截得的线段截得的线段AB的长的长|AB|=|-4+9|=5,符合题意。符合题意。类型之二两条直线所成的角及交点B1A1AxPBOyl1l2(3,1)例例2、已知

14、直线、已知直线l经过点经过点P(3,1),),且被两平行且被两平行直线直线l1:x+y+1=0和和l2:x+y+6=0截得的线段之长截得的线段之长为为5。求直线。求直线l的方程。的方程。若直线若直线l的斜率存在,则设的斜率存在,则设l的方程为的方程为y=k(x-3)+1,解方程组解方程组 y=k(x-3)+1 x+y+1=0 得A(),123kk114kk解方程组 y=k(x-3)+1 x+y+6=0 得B(,)173kk119kk由|AB|=5得2225)119114()173123(kkkkkkkk解之,得解之,得k=0,即所求的直线方程为,即所求的直线方程为y=1 综上可知,所求综上可知

15、,所求l的方程为的方程为x=3或或y=1 B1A1AxPBOyl1l2(3,1)例例2、已知直线、已知直线l经过点经过点P(3,1),),且被两平行且被两平行直线直线l1:x+y+1=0和和l2:x+y+6=0截得的线段之长截得的线段之长为为5。求直线。求直线l的方程。的方程。解二解二由题意,直线由题意,直线l1、l2之间之间的距离为的距离为d=2252|61|且直线且直线l被直线被直线l1、l2所截的线段所截的线段AB的长为的长为5,设直线设直线l与与l1的夹角为的夹角为,则则 225225sin故故=450 由直线由直线l1:x+y+1=0的倾斜角为的倾斜角为1350,知直线知直线l的倾斜

16、角为的倾斜角为00或或900,又由直线又由直线l过点过点P(3,1),故所求),故所求l的方程为的方程为x=3或或y=1。B1A1AxPBOyl1l2(3,1)例例2、已知直线、已知直线l经过点经过点P(3,1),),且被两平行且被两平行直线直线l1:x+y+1=0和和l2:x+y+6=0截得的线段之长截得的线段之长为为5。求直线。求直线l的方程。的方程。解三解三设直线设直线l与与l1、l2分别相交于分别相交于A(x1,y1)、)、B(x2,y2),则),则x1+y1+1=0,x2+y2+6=0。两式相减,得(两式相减,得(x1-x2)+(y1-y2)=5 又又 (x1-x2)2+(y1-y2

17、)2=25 联立 ,可得 x1-x2=5 或 x1-x2=0 y1-y2=0 y1-y2=5由上可知,直线由上可知,直线l的倾斜角为的倾斜角为00或或900,又由直线又由直线l过点过点P(3,1),故所求),故所求l的方程为的方程为x=3或或y=1。思维点拨思维点拨;要求直线方程只要有:点和;要求直线方程只要有:点和斜率(可有倾斜角算,也可以先找两点)。斜率(可有倾斜角算,也可以先找两点)。B1A1AxPBOyl1l2(3,1)例例3、点、点 关于直线关于直线 的对称点是的对称点是()对称问题对称问题(4,0)P54210 xyA(6,8)B(8,6)C(6,8)D(6,8)解:设点解:设点

18、关于直线关于直线 的对称点为的对称点为(4,0)P54210 xy111(,)P x y由轴对称概念由轴对称概念 的中点的中点 在对称轴在对称轴 上上 1PP1140(,)22xyM54210 xy且且 与对称轴垂直,与对称轴垂直,1PP则有则有 111145421 02244 5xyyx 解得解得 116,8,xy 1(6,8)P 点评:对称问题可化为点关于点对称,点关于直线对称的问题 D课前热身1、过点、过点A(3,0),且平行于直线,且平行于直线 的直线方程是的直线方程是_ 230 xy2360 xy2、两直线、两直线 与与 的夹角是的夹角是_ 320 xy3340 xy0603、两平行

19、直线、两平行直线 和和 间的距离是间的距离是 _2yx25yx53、过直线、过直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程为:交点的直线系方程为:A1x+B1y+C1+(A2x+B2y+C2)=0(R)(除除l2外外)。1、与直线、与直线Ax+By+C=0平行的直线方程为平行的直线方程为 Ax+By+m=02、与直线、与直线Ax+By+C=0垂直的直线方程为垂直的直线方程为Bx-Ay+m=0【例题选讲】【例题选讲】例例1、(优化设计优化设计P105P105例例2)2)已知两条直线已知两条直线 l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0,

20、当当m为为何值时何值时,l1与与l2()()相交;()平行;()重合相交;()平行;()重合。思维点拨思维点拨 先讨论、系数为的情况。先讨论、系数为的情况。例例2、(优化设计优化设计P105P105例例1)1)等腰三角形一腰所等腰三角形一腰所在直线在直线 的方程是的方程是 ,底边所在直线,底边所在直线 的方程是的方程是 ,点(,点(-2-2,0 0)在另一腰上,)在另一腰上,求该腰所在直线求该腰所在直线 的方程。的方程。022 yx1l2l01yx3l评述本题根据条件作出评述本题根据条件作出 =的结论,的结论,而后利用到角公式,最后利用点斜式求出而后利用到角公式,最后利用点斜式求出的方程。的方

21、程。123l例例3(3(优化设计优化设计P105P105例例3)3)已知点已知点P P(2 2,-1-1),),求:求:(1)过过P P点与原点距离为点与原点距离为2 2的直线的直线 的方的方程;程;(2)过过P P点与原点距离最大的直线点与原点距离最大的直线 的的方程,最大距离是多少?方程,最大距离是多少?(3 3)是否存在过是否存在过P P点与原点距离为点与原点距离为6 6的的直线?若存在,求出方程;若不存在,请直线?若存在,求出方程;若不存在,请说明理由。说明理由。ll评述评述求直线方程时一定求直线方程时一定要注意斜要注意斜率不存在的情况率不存在的情况 例例5、已知已知A(0,3),),

22、B(-1,0),),C(3,0)求求D点的坐标,使四边形点的坐标,使四边形ABCD是等腰梯形。是等腰梯形。-1BOCAD2D1备用题:备用题:思维点拨;利用等腰三角形性质思维点拨;利用等腰三角形性质“两底平行两底平行且两腰相等且两腰相等”,用斜率相等及两点间距离公式。,用斜率相等及两点间距离公式。【课堂小结】课堂小结】1要认清直线平行、垂直的充要条件,应特要认清直线平行、垂直的充要条件,应特别注意别注意x、y的系数中一个为零的情况的讨论。的系数中一个为零的情况的讨论。2在运用一条直线到另一条直线的角的公式在运用一条直线到另一条直线的角的公式时要时要注意无斜率的情况注意无斜率的情况及及两直线垂直的情况两直线垂直的情况。点到直线的距离公式是一个基本公式,它涉及点到直线的距离公式是一个基本公式,它涉及绝对值、点在线上、最小值等内容。绝对值、点在线上、最小值等内容。【布置作业】优化设计优化设计P105、P106

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(对数函数及性质教学课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|