1、第七章:实数复习目标复习目标1了解无理数与实数的概念,学会区分无理数了解无理数与实数的概念,学会区分无理数与有理数与有理数,会对实数进行分类会对实数进行分类2了解算术平方根,平方根,立方根的概念,了解算术平方根,平方根,立方根的概念,会用根号表示数的平方根立方根,掌握三会用根号表示数的平方根立方根,掌握三者的区别者的区别3掌握勾股定理及其逆定理的内容。会用勾股掌握勾股定理及其逆定理的内容。会用勾股定理解决实际问题,会用逆定理判定直角定理解决实际问题,会用逆定理判定直角三角形三角形(难点)(难点)算术平方根算术平方根负的平方根负的平方根你知道算术平方根、平方根、立方根联系和区别吗?你知道算术平方
2、根、平方根、立方根联系和区别吗?算术平方根 平方根 立方根表示方法表示方法a的取值的取值性性质质a3aa0a是任何数开开方方a0a正数正数0负数负数正数(一个)正数(一个)0没有没有互为相反数(两个)互为相反数(两个)0没有没有正数(一个)正数(一个)0负数(一个)负数(一个)求一个数的平方根求一个数的平方根的运算叫开平方的运算叫开平方求一个数的立方根求一个数的立方根的运算叫开立方的运算叫开立方是本身是本身0,100,1,-1实数实数有理数有理数无理数无理数分数分数整数整数正整数正整数 0负整数负整数正分数正分数负分数负分数自然数自然数正无理数正无理数负无理数负无理数无限不循环小数无限不循环小
3、数有限小数及无限循环小数有限小数及无限循环小数一般有三种情况一般有三种情况、)1(开不尽的数”“”“23,、00010100100010.0)3(类似于、_64_99练习:1、8是 的平方根,64的平方根是 ;的平方根是 。2、的立方根是(的立方根是(),),的平方根是的平方根是()3.当当x _ 时,时,2x-1没有平方根没有平方根4.4.一个正数一个正数x x的两个平方根分别是的两个平方根分别是a+1a+1和和a-3,a-3,则则 a=,x=a=,x=0.5146488-43233-64的立方根是的立方根是_ 64811、判断下列说法是否正确:、判断下列说法是否正确:1.实数不是有理数就是
4、无理数。实数不是有理数就是无理数。()2.无限小数都是无理数。无限小数都是无理数。()3.无理数都是无限小数。无理数都是无限小数。()4.带根号的数都是无理数。带根号的数都是无理数。()5.两个无理数之和一定是无理数。(两个无理数之和一定是无理数。()6.所有的有理数都可以在数轴上表示,反过来,所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。(数轴上所有的点都表示有理数。()7.平面直角坐标系中的点与有序实数对之间是平面直角坐标系中的点与有序实数对之间是一一对应的。(一一对应的。(),41,23,7,25,2,320,5,83,94,0 3737737773.0(相邻两个(
5、相邻两个3之间的之间的7的个数逐次加的个数逐次加1),83,41,25,94,0 ,23,7,2,320,5 3737737773.0 不要遗漏3.解方程:解方程:4)3(92 y323312yy或当方程中出现平方时,若有解,一般都有两个解012532273)(x1x当方程中出现立方时,一般都有一个解当方程中出现立方时,一般都有一个解(1).解解:94)3(2 y(2).解解:125)32(273x27125)32(3x32712532x3532x943 y323yxx2224、若,则x的取值范围是 _ 5cba、位置如图所示,试化简 22)1(cbacbaax2解:原式解:原式-a-(b-a
6、)+(c-a)-(c-b)=-a-b+a+c-a-c+b=-a115115_nm则6、已知的小数部分为m,,的小数部分为n 11114311m11-4n11-4111-5211-513-11-4-41133-11m3-118115911584113n,小数部分是的整数部分是,小数部分是的整数部分是解:ba,013325322baba8、已知等腰三角形的两边长满足,求三角形的周长解:由题意,得解:由题意,得2a-3b+5=02a-3b-13=0解得:解得:a=2b=3所以等腰三角形的三边为所以等腰三角形的三边为2,2,3或或2,3,3所以,三角形的周长为所以,三角形的周长为7或或87、计算:33
7、1.440.1618 (1)解:原式解:原式1.2+0.4+1-2 0.6306425|3|)2()538(解:原式解:原式3+5-1+4 11aaa43a9、已知,求的值。10、已知、已知322xxy,求,求 y-x的算术的算术平方根平方根解:由题意得:解:由题意得:a-40解得解得a4 a-3+aa 434 aa-4=9a=13解:由题意,得:解:由题意,得:X-202-x0解得:解得:x2x2x=2当当x=2时,时,y=3123xy勾股定理勾股定理逆定理逆定理两直角边的平方两直角边的平方和等于斜边的平和等于斜边的平方即方即cba222若三角形的三若三角形的三边满足边满足 则三角形是直则三
8、角形是直角三角形角三角形cba222是直角三角形是直角三角形的性质的性质用来判定三角用来判定三角形是否是直角形是否是直角三角形三角形内容内容用途用途勾股定理与逆定理典型题目典型题目1、张大爷家屋前、张大爷家屋前9米远处有一棵大树。米远处有一棵大树。在一次强风中,这棵大树从离地面在一次强风中,这棵大树从离地面6米处米处折断倒下,量得倒下部分的长是折断倒下,量得倒下部分的长是10米。米。大树倒下时能砸到张大爷的房子吗?请大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的答案你通过计算、分析后给出正确的答案 1063、直角三角形两条直角边的长为、直角三角形两条直角边的长为1和和 ,求斜边上的高。,求斜边上的高。57或2、三角形三边三角形三边 a,b,c满足满足 则此三角形为则此三角形为_.022)8()(22cbab等腰直角三角形等腰直角三角形23 在在RtABC其中两边其中两边 a,b满足满足 则此三角形则此三角形c边长为边长为_.04b3a34、已知:如图,四边形、已知:如图,四边形ABCD中中,B900,AB3,BC4,CD12,AD13,求四边形求四边形ABCD的面积的面积?ABCDS四边形四边形ABCD=363412135S四边形四边形ABCD=?