1、2022-11-23第八章工序质量控制第八章工序质量控制第八章工序质量控制第八章工序质量控制学习目标学习目标1认识工序质量的受控状态和失控状态的特点及典 型表现;2理解工序能力的意义,了解工序能力测定的条件 和方法;3掌握工序能力指数的意义和各种情况下的计算方 法,理解工序能力指数和不合格率的关系,了解 利用工序能力指数对工序能力进行判断及处置的 原则;4掌握控制图的概念、原理和分类,熟悉几种常用 控制图的设计方法,了解利用控制图对过程质量 状态进行分析与判断的规定。第八章工序质量控制第一节第一节 工序质量的受控状态工序质量的受控状态一、工序质量的两种状态一、工序质量的两种状态 生产过程中质量
2、波动的综合体现是工序质量特工序质量特 性值性值的波动。在受控状态下,这种波动的统计规律 性可以用正态分布随机变量正态分布随机变量来近似近似描述;正态分布的两个参数则需要通过总体总体的随机样 本来进行估计:用样本统计量(样本平均值)x 去估计,用s(样本标准差)去估计;第八章工序质量控制 生产过程中,工序质量有两种状态:受控状态受控状态和 失控状态失控状态。如工序质量特性值为X,分布参数为 和,即XN(,2),则工序质量的两种状态 可以用和的变化来判别。(一)受控状态(一)受控状态(in control)工序质量处于受控状态时,质量特性值的分布特 性不随时间而变化,始终保持稳定且符合质量规格 的
3、要求。见下图8-1。第八章工序质量控制图图8-1 生产过程的受控状态生产过程的受控状态第八章工序质量控制在图8-1中,0和0 是排除了影响工序质量的系统 性因素后,质量特性值X或其统计量的数学期望数学期望和 标准差标准差,是工序质量控制的目标。图中黑点表示随 着时间的推移,X的观测值x(或X的统计量的观测 值,如样本平均值 、样本中位数 等)的散布 情况。这些黑点依概率散布在中心线(0)两侧,不应有任何系统性规律,且都介于上、下控制限 (UCL和LCL)之间。第八章工序质量控制(二)失控状态(二)失控状态(out of control)(1)0,=0,保持稳定。见图8-2。(2)=0,0 ,保
4、持稳定。见图8-3。(3)0,0,和 都保持稳定。(4)和 中至少有一个不稳定,随时间而变化。不论是何种形式的失控状态,都表示存在导致 质量失控的系统性因素。一旦发现工序质量失控,就应立即查明原因,采取措施,使生产过程尽快恢 复受控状态,减少因过程失控所造成的质量损失。第八章工序质量控制二、工序质量状态识别中的问题二、工序质量状态识别中的问题1.“1.“受控受控”和和“失控失控”是和控制目标相关联的两种质量是和控制目标相关联的两种质量状态,在一定条件下,它们可以相互转化。状态,在一定条件下,它们可以相互转化。工序质量工序质量控制控制是一个不断发现问题、分析问题、反馈问题和纠正问题的动态监控过程
5、(见图8-4)。从某种意义上说,工序质量控制的成功取决于能否及时发现生产过程的质量偏差,即质量特性值的异常表现。发现发现分析分析反馈反馈纠正纠正图图84 工序质量控制系统工序质量控制系统第八章工序质量控制2.2.由于生产过程中工序质量特性值表现的随机性,工由于生产过程中工序质量特性值表现的随机性,工 序质量异常波动的发现及原因的分析往往需要借助序质量异常波动的发现及原因的分析往往需要借助 数理统计中的统计推断方法。数理统计中的统计推断方法。统计推断中广泛使用 的样本平均值统计量,不论其来自什么样的总体,只要样本容量n充分大(实践中只需n30),样本 平均值 就必定趋近于正态分布,见P225图8
6、-5所示。w总体总体数学期望数学期望常用样本样本平均值 来估计。有时也用 样本中位数 来估计。w总体总体标准差 可用样本样本标准差s来估计,也可用样本 极差R或R序列的平均值 来估计。实际应用中,的 估计值 ,其中 是和样本容量n有关的 参数,可查表8-1。第八章工序质量控制表81 33控制限参数表控制限参数表nd2d3A2D3D4M3E21.1284 0.8531.880/3.2671.0002.66031.6926 0.8881.023/2.5751.1601.77242.0588 0.8800.729/2.2821.0921.45752.3259 0.8640.577/2.1151.19
7、81.29062.5344 0.8480.483/2.0041.1351.18472.7044 0.8330.4190.0761.9241.2141.10982.8472 0.820o.3730.1361.8641.1601.05492.9701 0.8080.3370.1841.8161.2241.010103.0775 0.7970.3080.2231.7771.1760.975第八章工序质量控制第二节第二节 工序能力和工序能力指数工序能力和工序能力指数一、工序能力分析一、工序能力分析(一)工序能力的概念(一)工序能力的概念 当影响工序质量的各种系统性因素已经消除,由 5M1E等原因引起的
8、偶然性质量波动已经得到有效的 管理和控制时,工序质量处于受控状态。这时,生 产过程中工序质量特性值的概率分布反映了工序的 实际加工能力。工序能力工序能力是受控状态下工序对加工质量的保证能 力,具有再现性或一致性的固有特性。第八章工序质量控制w工序能力工序能力B可用工序质量特性值分布的分散性特征 来度量。如工序质量特性值 X 的数学期望为,标 准差为,则 其中:w当 X(,2)时,p(-3x+3)=99.73%。(-3,+3)几乎包括了质量特性值X的实际 分布范围。B越小,工序能力越强。工序能力的大 小应和质量要求相适应。w工序能力指标大致有以下三个方面的用途:(1)选择经济合理的工序方案;(2
9、)协调工序之间的相互关系;(3)验证工序质量保证能力;第八章工序质量控制(二)工序能力的调查(二)工序能力的调查 工序能力调查一般只对已确定设置工序质量控制 点的关键工序关键工序进行。调查工作的流程见图8-6。(三)工序能力的测定(三)工序能力的测定w为使测定结果真实可靠,被调查的工序必须标准 化,进入管理状态;样本容量要足够大,至 少不得少于50。w工序能力的测定方法,通常有以下几种:1.较正规的测定方法是利用公式:B=6s=6R/d2 2.当需要快速算得结果,而精度要求不高时,可取 一个容量为10的样本,得极差R。此时查表8-1 d23.078,故得简化公式B 2R第八章工序质量控制 3.
10、SCAT法(Simple Capability Acceptance Test)。这是一种快速简易判断法。使用于不适合大样本测定(如时间紧、破坏性 检验等)的问题。基本方法是把预先规定的工序能力是否合格的 判断值和由样本得到的极差R进行比较,以判定工 序能力是否满足质量要求。第八章工序质量控制二、工序能力指数二、工序能力指数C Cp p 工序能力指数工序能力指数:工序质量标准的范围(公差T)与工序能力的比率。Cp=T/6 (工序能力应当满足质量控制的实际需要)(工序能力应当满足质量控制的实际需要)w 在一定工序条件下,工序能力工序能力B=6基本稳定,它 反映工序的固有能力;w 工序能力指数工序
11、能力指数把工序能力和实际的质量控制要求联 系起来。即使是相同的工序能力,也会因为工序质 量标准的不同,而使工序能力指数大相径庭;w 因此,只有通过工序能力指数,才能考察工序能力只有通过工序能力指数,才能考察工序能力 是否满足质量控制的实际需要。是否满足质量控制的实际需要。第八章工序质量控制(一)工序能力指数的计算(一)工序能力指数的计算 只有在工序处于受控状态的条件下,才能计算 工序能力指数。1.1.工序无偏,双向公差的情形工序无偏,双向公差的情形 设工序公差为T,公差上限和下限分别为Tu 和TL,公差中心为 TM ,则 x=TM。见下图8-7。在图 中,Pu 和PL 分别为超上差和超下差的不
12、合格率。第八章工序质量控制 此时此时,第八章工序质量控制 2.2.工序有偏,双向公差的情形工序有偏,双向公差的情形 因为工序有偏,即 ,见下图8-8。偏移量偏移量:,偏移系数偏移系数:工序有偏的工序能力指数工序有偏的工序能力指数:实际上,当工序无偏时,0,故此时 。一般情况下,应有 ,故 ,因此 。第八章工序质量控制第八章工序质量控制3.3.单向公差的情形单向公差的情形 当只要求控制单向公差时,工序质量特性值一般为非正态分布。由于它的真实分布较复杂,所以常用正态分布正态分布来近似。w当只要求控制公差上限时:w当只要求控制公差下限时:第八章工序质量控制(二)工序能力指数和不合格率(二)工序能力指
13、数和不合格率(工序处于受控状态,且质量特性值服从正态分布)1.1.工序无偏时的不合格率工序无偏时的不合格率p p 工序无偏工序无偏时,,见图8-7。显然 所以 又因为 所以:若记合格率为q,则 第八章工序质量控制2.2.工序有偏时的不合格率工序有偏时的不合格率p p 工序有偏工序有偏时,如图8-8所示。显然,w当工序当工序右偏右偏,即 时,所以有不合格率不合格率p:第八章工序质量控制w当工序当工序左偏,左偏,即 时,所以仍有仍有不合格率不合格率p:第八章工序质量控制w综上所述,当工序处于受控状态,质量特性值服从正 态分布时,不合格品率p和合格品率q的计算如下:w当工序无偏工序无偏时:w当工序有
14、偏工序有偏时:w当工序无偏时,k0,上述两个公式是一致的。一般,工序有偏时的不合格率要高于无偏时的不合格率。w利用上述公式已编制了相应的数值表,见表8-2。第八章工序质量控制三、工序能力的判断及处置三、工序能力的判断及处置w工序能力的判断工序能力的判断是对工序能力满足质量标准的程度做 出判断。目的是对工序进行预防性处置,以确保生产过 程的质量水平。理想的工序能力理想的工序能力既要满足质量保证的要求,又要符 合经济性的要求。w表83列出的工序能力判断标准也适用于Cpk、CpL 和Cpu。当发现工序有偏时,原则上应采取措施调整 分布中心。考虑到调整时的技术难度及成本,工序 有偏时调整的标准列于下表
15、8-4。第八章工序质量控制表表83 工序能力指数判断标准工序能力指数判断标准能力能力等级等级工序能力指数工序能力指数工序能力判断工序能力判断特级特级过过 剩剩一级一级充充 足足二级二级三级三级不不 足足四级四级严重不足严重不足偏移系数偏移系数k工序能力指数工序能力指数采取措施采取措施0k0.25不必调整均不必调整均值值0.25k0.50注意均值变注意均值变化化0k0.25密切观察均密切观察均值值0.25k0.50采取必要调采取必要调整措施整措施表表84 存在存在 k 时的判断标准时的判断标准第八章工序质量控制例例1 某零件内径尺寸公差为某零件内径尺寸公差为 ,从一足够大的随,从一足够大的随机样
16、本得,机样本得,s0.003。试作工序能力分析。试作工序能力分析。解:公差中心 ,即工序右偏 偏移量 偏移系数 所以,工序能力指数工序能力指数 因为,工序无偏能力指数 ,所以不合格率不合格率:根据Cp1.667和k0.6,对照表8-4,虽然工序能力很强,但由于偏移系数太大,导致实际工序能力严重不足,所以要注意均值的变化,找出使加工中心发生偏离的系统性原因,减少加工中心 和公差中心TM的偏离程度。第八章工序质量控制第三节第三节 工序质量控制图工序质量控制图一、控制图的概念、原理和分类一、控制图的概念、原理和分类(一)控制图的概念和原理(一)控制图的概念和原理 控制图控制图(control cha
17、rt)是控制生产过程状态、保证工序质量 的主要工具。应用控制图可以对工序过程状态进行分析、预测、判断、监控和改进,实现预防为主的过 程质量管理。第八章工序质量控制图图89 控制图的基本模式控制图的基本模式第八章工序质量控制w控制界限控制界限一般根据“3”原理来确定。如中心线:CL=,则:UCL=+3;LCL=-3w如工序质量特性值或其统计量服从(或近似服从)正 态分布,且工序处于受控状态,工序能力也充足,则 根据正态分布原理,按时间顺序抽样的观测数据点散 布在控制界限内的概率约为99.73,在控制界限外 的概率约为0.27%。并且,这些观测数据点在控制图 上的散布关于纵轴方向应是独立随机的,其
18、密度应符 合 的统计规律。X(,2)第八章工序质量控制w而如果在生产过程中,一旦发现观测数据点越出控 制界限或在控制界限内的散布相互不随机独立,不 符合 的统计规律,根据统计推断的原理,应当怀疑生产过程已受到系统性因素的干扰,可能 已处于失控状态。利用控制图对生产过程质量状态进行统计推断 的基本原理可参见下图8-10,按“3”原理,其中:=0.0027,/2=0.00135X(,2)第八章工序质量控制w控制图的第一类错误控制图的第一类错误:当生产过程处于受控状态,工序能力充足,质量特性值或其统计量服从正态 分布时,虽然观测数据点落在控制界限外的概率只 有0.27%,但由于样本的随机性,仍有可能
19、会发生。当0.27%的小概率事件真的发生时,将会导致“生产 过程失控”的错误判断。称这一类因虚发信号而造成 的错误判断为控制图的第一类错误(控制图的第一类错误(表示)表示)。w控制图的第二类错误控制图的第二类错误:与此相反,当系统性质量因素 影响生产过程而使工序质量失控时,由于样本的随 机性,仍会有一定比例的观测数据点落在控制界限 内。当这种情况发生时,将会导致“生产过程正常”的 错误判断。称这一类错误为控制图的第二类错误控制图的第二类错误(以(以 表示)表示)。第八章工序质量控制 控制图的第一类错误概率用表示,控制图的第二 类错误概率用表示,见图8-10。控制图的两类错误都将造成生产过程的混
20、乱和经济 损失。显然,1-是过程失控得到正确判别的概率过程失控得到正确判别的概率,一般 称之为检出力检出力。改变控制界限可以改变两类错误的概率,但此消彼 长,无法完全避免,也无法同时减少。第八章工序质量控制图图810 控制图的两类错误控制图的两类错误第八章工序质量控制w工序质量控制图可以直接控制生产过程,起到预防为 主、稳定生产、保证质量的作用。控制图的作用控制图的作用大 致体现在下列几个方面:(1)应用于质量诊断;(2)应用于质量控制;(3)应用于质量改进。(二)控制图的分类(二)控制图的分类 1.常按质量特性值或其统计量的观测数据的性质分 成:计量值控制图计量值控制图和计数值控制图计数值控
21、制图两大类。2.在控制图的实际应用中,常将表现数据集中程度 的控制图和分散程度的控制图联合使用。两图连 用后,检出力得到加强。w 一些常用的控制图见下表8-5所示。第八章工序质量控制表表8 85 5 控制图种类及适用场合控制图种类及适用场合 类别名称控制图符 号中心线上、下控制限特 点适用场合计计量量值值控控制制图图平均值极差 控制图最 常 用。效果好,但计算工作量大产品批量较大的工序中位数极差控制图计 算 简 便,但效果较差产品批量较大的工序单值移动极差控制图简 单,判 断及时。不易发现工序分布中心的变化每次只能得到一个数据或希望尽快发现并消除异常因素计计数数值值控控制制图图不合格品数控制图
22、较 常 用,简单,易于理解样本大小相等不合格品率控制图计 算 量 大,控制线凹凸不平样本大小可以不等缺陷数控制图较 常 用,简单,易于理解样本大小相等单位缺陷数控制图计 算 量 大,控制线凹凸不平样本大小可以不等第八章工序质量控制二、控制图的设计二、控制图的设计 1.收集数据;2.确定控制界限(UCL、LCL”3”原理);3.绘制控制图;4.控制界限的修正;5.控制图的使用和改进。三、几种常用的控制图三、几种常用的控制图(一)三种常用的(一)三种常用的计量值控制图计量值控制图 【例】某种钻头车外圆工序的质量标准是直径6.46mm 6.50mm。开始加工时,先每隔半小时抽取五个样品,测得直径数据
23、。共采集了20个样本。为了便于计算,作数据变换:w变换后的数据 列于P240表8-6。第八章工序质量控制 1.平均值平均值极差控制图(极差控制图(x-R图)图)例例2 利用表8-6数据设计 x-R控制图。解:解:20组数据的总平均值 =78.44,平均极差 。由样本容量n5,查表8-1知,参数 ,。所以,x-R控制图的设计如下(公式见表8-5):对于 x 图:对于R 图:经数据还原,x 图的中心线为6.478,控制上限为6.487,控制下限为6.470;R图的中心线为0.0145,控制上限为0.0307,控制下限为0。实测数据的 x-R控制图见下图8-11。第八章工序质量控制图图8 811 1
24、1 例例2 2的的 控制图控制图 第八章工序质量控制2.2.中位数中位数极差控制图(极差控制图(-R图)例例3 利用表8-6数据设计 -R控制图。解:解:由表8-6知,中位数平均值 78.25,平均极差 =14.5。由于样本容量n5,查表8-1知,参数 ,同例2。所以,-R控制图的设计如下(公式见表8-5):对于 图:R图同例2,从略。和例2比较,图中上、下控制限的间距略大于 图中的上、下限间距。表明 图的检出力比 图的稍逊,但使用方 便是其优点。第八章工序质量控制3 3单值单值-移动极差控制图移动极差控制图(X-Rs图图)例例4 利用表利用表8-6数据设计单值数据设计单值-移动极差控制图。移
25、动极差控制图。解解:移动极差Rs是按时间顺序相邻两质量特性值观测数据的差异,因此,可看作容量为n=2的样本的极差。从表8-1查得:E=2.66,D4=3.267,D3=0。根据表8-6所列100个数据,可求得99个移动极差(从略)。99个极差的平均值:所以,控制图的设计如下(公式见表8-5):对于x图:对于 Rs 图:数据还原及绘图从略。X-Rs第八章工序质量控制(二)两种常用的(二)两种常用的计数值控制图计数值控制图w 计数值控制图计数值控制图可以利用常规的质量记录、统计报表 提供的信息,不必在生产现场专门采集即时数据,使用简单方便,能为管理决策提供直接、及时的信 息。w 但是,计数值控制图
26、对生产过程质量波动的敏感性 较差,对质量状态失控的原因也较难直接揭示。w 计数值控制图一般是单图使用。第八章工序质量控制1.1.不合格率(不合格率(p p图)图)和和不合格数控制图(不合格数控制图(npnp图)图)w不合格率控制图不合格率控制图以生产过程不合格率为控制对象,可以用于样本大小不等的场合。w不合格数控制图不合格数控制图以生产过程不合格数为控制对象,常用于样本大小相同的场合。w如产品(或加工对象)的质量合格与否必须由多种 检查项目综合判断,则当控制图告警时,往往难以 判断引起质量问题的原因。在这种情况下,如在控 制图设计时,能突出影响合格性的重要检查项目,放弃一些次要检查项目,也不失
27、为一种明智之举。w如样本容量为n,不合格率为p,则不合格数为np。因此,不合格率控制图和不合格数控制图存在密切 的内在联系。第八章工序质量控制例例5 工序产品检测数据见表工序产品检测数据见表8-7。试作。试作np及及p控制图。控制图。解解:k25个检验批,每批容量 和不合格数 见表 进一步可算得:对于p控制图:对于np控制图:例5的np控制图见P246图8-12,p控制图从略。在np图和p图中,如控制下限为负数,则改取零,即不作限制。第八章工序质量控制2.2.缺陷数控制图(缺陷数控制图(c c图)和单位缺陷数控制图(图)和单位缺陷数控制图(u u图)图)w缺陷数控制图缺陷数控制图和单位缺陷数控
28、制图单位缺陷数控制图是计点值类型的 控制图。wC图适用于检测对象大小相同或近似的缺陷数控制 问题,而当检测对象大小差异较大时最好使用u图。第八章工序质量控制例例6 对某产品的同一部位表面进行检验,共检验了对某产品的同一部位表面进行检验,共检验了25个个 产品。产品。25个产品的该部位缺陷数见表个产品的该部位缺陷数见表8-8。试作。试作c控控 制图和制图和u控制图。控制图。解解:k25,和 均已知。对于对于c控制图控制图:因为缺陷数不能为负数,且必须为整数,故c控制图须作如 下调整(见下页图8-14):对于对于u控制图控制图:单位缺陷数不能为负值,故u控制图须作如下调整(图略):第八章工序质量控
29、制 例例6 6的的c c控制图控制图 第八章工序质量控制四、控制图的分析与判断四、控制图的分析与判断w用控制图监视和识别生产过程的质量状态,就是根据 样本数据形成的样本点的位置及变化趋势对工序质量 进行分析和判断。如发现异常情况,应及时查明原 因,采取相应措施,使工序重新回到受控状态。w控制图是在生产过程中,对工序质量进行预防为主的、面向生产现场的重要监控工具。w生产过程受控状态的典型表现是同时符合下列两方面的要求:(1)样本点全部处在控制界限内;(2)样本点在控制界限内排列无异常。w原则上,如不符合上述任何一方面的要求,就表示生 产过程已处于失控状态。第八章工序质量控制(一)表示受控状态的控
30、制图的特点(一)表示受控状态的控制图的特点 1.所有样本点都在控制界限内;2.位于中心线两侧的样本点数目大致相同;3.越近中心线,样本点越多。在中心线上、下各一个 “”的范围内的样本点约占2/3,靠近控制界限的样 本点极少;4.样本点在控制界限内的散布是独立随机的,无明显 规律或倾向。w对于下列情况仍可认为生产过程处于受控状态(仍应 及时找出界外点的产生原因):连续25个样本点在控 制界限内;连续35个样本点中仅有一个超出控制界限;连续100个样本点中,至多只有两个样本点超出控制 界限。第八章工序质量控制(二)表示失控状态的控制图的特点(二)表示失控状态的控制图的特点 有较多样本点超出控制界限
31、,或样本点在控制界限内 的散布显示非随机独立的迹象。对于前者,可参考 受控状态的要求进行分析与判断;对于后者,则可 细分为下面四种具体情况:1.有多个样本点连续出现在中心线一侧有多个样本点连续出现在中心线一侧w在中心线一侧出现5点链时应注意工序的发展,出现6 点链时应开始作原因调查,出现7点链时就可判断生 产过程已失控(见下图)。第八章工序质量控制第八章工序质量控制w当出现至少有10个样本点位于中心线同侧的11点链,至少有12个样本点位于中心线同侧的14点链,至少 有14个样本点位于中心线同侧的17点链,以及至少 有16个样本点位于中心线同侧的20点链等情况时,也可判断生产过程失控。2.出现连
32、续上升或下降的出现连续上升或下降的8点链点链 3.有多个样本点接近控制界限有多个样本点接近控制界限 3点链中至少有2点落在警戒区内,7点链中至少 有3点落在警戒区内,10点链中至少有4点落在 警戒区内,则可判断生产过程失控。4.样本点散布出现下列四种趋势或规律样本点散布出现下列四种趋势或规律 (1)周期性变化;(2)分布水平突变;(3)分布水平渐变;(4)离散度变大;第八章工序质量控制第四节第四节 实施实施统计过程控制统计过程控制(SPCSPC)中的一些问题中的一些问题一、关于一、关于SPCSPC的一些认识的一些认识w SPC和ISO9000:2000具有密切的关系;w 企业实施SPC也经常会
33、有一些认识误区,如:(1)缺少适宜的测量工具。(2)生产过程未经验证,直接使用控制图。(3)没有将控制图用于质量改进。(4)使用控制图是质量管理部门或人员的事情。第八章工序质量控制二、关于二、关于SPCSPC的实施现状及发展的实施现状及发展w目前,已有越来越多的企业开始采用SPC来进行质量 管理,并取得了明显成效,同时大型企业也开始要求 供应商采用SPC控制质量,SPC正以其显而易见的 功效得到企业的普遍认可。w其发展呈现如下特点:1.分析功能强大,辅助决策作用明显;2.体现全面质量管理思想;3.与计算机网络技术紧密结合;4.系统自动化程度不断加强;5.系统可扩展性和灵活性要求越来越高。2022-11-23第八章工序质量控制