1、专题(三)解直角三角形应用问题题型解读解直角三角形是中考必考的内容,考查的方式一般都以大题形式呈现,有时还结合三角形相似,主要考查在一个直角三角形或两个共边的直角三角形之间进行线段的求解与应用.例1 2018安徽 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图Z3-1所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时AEB=FED).在F处测得旗杆顶A的仰角为39.3,平面镜E的俯角为45,FD=1.8米.问旗杆AB的高度约为多少米?(结果保留整数,参考数据:tan39.30.82,tan84.
2、3 10.02)题型一俯角、仰角问题题型一俯角、仰角问题拓展1 如果从某一高处甲看低处乙的俯角为30,那么从乙处看甲处,甲在乙的()A.俯角30方向B.俯角60方向C.仰角30方向D.仰角60方向C题型一俯角、仰角问题拓展2 2018梧州 随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30,测得瀑布底端B点的俯角是10,AB与水平面垂直(如图Z3-2).又在瀑布下的水平面测得CG=27 m,GF=17.6 m(注:C,G,F三点在同一直线上,CFAB于点F).
3、斜坡CD=20 m,坡角ECD=40.求瀑布AB的高度.(参考数据:1.73,sin400.64,cos400.77,tan400.84,sin100.17,cos100.98,tan100.18)解:过点D作DMCE,交CE于点M,作DNAB,交AB于点N.在RtCMD中,CD=20m,DCM=40,CMD=90,CM=CDcos4015.4 m,DM=CDsin4012.8 m.DN=MF=CM+CG+GF=60 m.在RtBD中,BDN=10,BND=90,DN=60m,BN=DNtan1010.8 m.在RtADN中,ADN=30,AND=90,DN=60 m,AN=DNtan3034
4、.6 m.AB=AN+BN=45.4 m.答:瀑布AB的高度约为45.4米.题型二坡角问题例2 2017海南 为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:如图Z3-3,水坝加高2米(即CD=2米),背水坡DE的坡度i=11(即DBEB=11).已知AE=4米,EAC=130,求水坝原来的高度BC.(参考数据:sin500.77,cos500.64,tan501.2)图Z3-3题型二坡角问题【分层分析】设BC=x米,则在RtABC中,根据三角函数的性质,可以用x表示出AB的长;利用坡度的定义得到BD=BE,根据CD+BC=AE+AB,从而列出方程即可求出x的值.【
5、方法点析】利用坡度、坡角解直角三角形,关键要利用坡角去添辅助线,构造出直角三角形.题型二坡角问题AC题型二坡角问题拓展3 2018安顺 如图Z3-6,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面AC的倾斜角CAB=45,在距A点10米处有一建筑物HQ.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角BDC=30.若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除?(计算最后结果保留一位小数,参考数据:1.414,1.732)题型三方位角问题例3 2017连云港 如图Z3-7,湿地景区岸边有三个观景台A,B,C.已知AB=1400米,A
6、C=1000米,B点位于A点的南偏西60.7方向,C点位于A点的南偏东66.1方向.(1)求ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A,D间的距离.(结果精确到0.1米,参考数据:sin53.20.80,cos53.20.60,sin60.70.87,cos60.70.49,sin66.1 0.91,cos66.10.41,1.414)题型三方位角问题例3 2017连云港 如图Z3-7,湿地景区岸边有三个观景台A,B,C.已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7方向,C点位于A点的南偏东66.1方向.(2)景区规划在线
7、段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A,D间的距离.(结果精确到0.1米,参考数据:sin53.20.80,cos53.20.60,sin60.70.87,cos60.70.49,sin66.1 0.91,cos66.10.41,1.414)题型三方位角问题题型三方位角问题【分层分析】(1)过点C作CEAB,交BA的延长线于点E,然后根据平角的定义求出CAE,再根据AC求出CE的长,从而得到ABC的面积;(2)连接AD,过点D作DFAB,垂足为点F,则DFCE,然后求出AE,BE的长,再根据中位线定理及勾股定理求解即可.【方法点析】利用方位角解题步骤:(1)利用方位构造直角
8、三角形;(2)利用方位角转移角;(3)解直角三角形.题型三方位角问题拓展 2018十堰 如图Z3-8,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30方向上的B处.求此时船距灯塔的距离.(参考数据:1.414,1.732,结果取整数)题型四夹角问题例4 2018资阳 如图Z3-9,是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30角,线段AA1表示小红的身高1.5米.(1)当风筝的水平距离AC=18米时,求此时风筝线AD的长度;(2)当她从点A跑动9米到达点B处时,风筝
9、线与水平线构成45角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.题型四夹角问题例4 2018资阳 如图Z3-9,是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30角,线段AA1表示小红的身高1.5米.(2)当她从点A跑动9米到达点B处时,风筝线与水平线构成45角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.题型四夹角问题题型四夹角问题题型四夹角问题拓展1 如图Z3-10,要在宽AB为20米的瓯海大道两边安装路
10、灯,路灯的灯臂CD与灯柱BC成120角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳.若CD=米,则路灯的灯柱BC高度应该设计为米(计算结果保留根号).图Z3-10题型四夹角问题拓展2 根据爱因斯坦的相对论可知,任何物体的运动速度不能超过光速(3105 km/s),因为一个物体达到光速需要无穷多的能量,并且时光会倒流,这在现实中是不可能的.但我们可让一个虚拟物超光速运动,例如:直线l,m表示两根木棒,相交成的锐角的度数为10,它们分别以与自身垂直的方向向两侧平移时,它们的交点A也随着移动(如图Z3-11中箭头所示).若两条直线的移动速度都
11、是光速的0.2倍,则交点A的移动速度是光速的倍.(结果精确到0.1)图Z3-11【答案】2.3【解析】如图,根据题意,设光速为t m/s,则1秒内m与l移动的距离为0.2t m,过点A作ACAC于点C,在RtACA中,AAC=102=5,AC=0.2t m,AA=CAsin52.3t.A移动的距离约为2.3t m.故交点A的移动速度是光速的2.3倍.题型五其他问题例5 2018绍兴 如图Z3-12,窗框和窗扇用“滑块铰链”连接.图是图中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE,交MN于点F
12、.已知AC=DE=20 cm,AE=CD=10 cm,BD=40 cm.(1)窗扇完全打开,张角CAB=85,求此时窗扇与窗框的夹角DFB的度数;(2)窗扇部分打开,张角CAB=60,求此时点A,B之间的距离(精确到0.1 cm).(参考数据:1.732,2.449)解:(1)AC=DE,AE=CD,四边形ACDE是平行四边形.CADE.DFB=CAB=85.题型五其他问题例5 2018绍兴 如图Z3-12,窗框和窗扇用“滑块铰链”连接.图是图中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE,交MN于点F.已知AC=DE=20 cm,AE=CD=10 cm,BD=40 cm.(2)窗扇部分打开,张角CAB=60,求此时点A,B之间的距离(精确到0.1 cm).(参考数据:1.732,2.449)题型五其他问题拓展1 如图Z3-13是一种阳台户外伸缩晾衣架,侧面示意图如图所示,其支架AB,CD,EF,GH,BE,DG,FK的长度都为40 cm(支架的宽度忽略不计),四边形BQCP、DMEQ、FNGM是互相全等的菱形,当晾衣架的A端拉伸到距离墙壁最远时,B=D=F=80,这时A端到墙壁的距离约为多少cm?(sin400.643,cos400.766,tan400.839)