高等数学课件D31微分中值定理.ppt

上传人(卖家):晟晟文业 文档编号:4332169 上传时间:2022-11-30 格式:PPT 页数:27 大小:1.10MB
下载 相关 举报
高等数学课件D31微分中值定理.ppt_第1页
第1页 / 共27页
高等数学课件D31微分中值定理.ppt_第2页
第2页 / 共27页
高等数学课件D31微分中值定理.ppt_第3页
第3页 / 共27页
高等数学课件D31微分中值定理.ppt_第4页
第4页 / 共27页
高等数学课件D31微分中值定理.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、第三章中值定理中值定理应用应用研究函数性质及曲线性态利用导数解决实际问题罗尔中值定理拉格朗日中值定理柯西中值定理泰勒公式(第三节)推广推广微分中值定理 与导数的应用 一、罗尔一、罗尔(Rolle)定理定理第一节二、拉格朗日二、拉格朗日(Lagrange)中值定理中值定理 三、柯西三、柯西(Cauchy)中值定理中值定理 中值定理 第三三章 费马费马(fermat)引理引理一、罗尔一、罗尔(Rolle)定理定理,)(0有定义在xU且)(0 xf 存在,)()(0 xfxf)(或0)(0 xf证证:设,)()(,)(0000 xfxxfxUxx则)(0 xf xxfxxfx)()(lim000)0

2、(x)(0 xf)0(x)(0 xf000)(0 xf)(xfy 证毕xyO0 x罗尔(罗尔(Rolle)定理)定理)(xfy 满足:(1)在区间 a,b 上连续(2)在区间(a,b)内可导(3)f(a)=f(b),使.0)(f证证:,上连续在因,)(baxf故在 a,b 上取得最大值 M 和最小值 m.若 M=m,则,)(baxMxf因此.0)(,),(fba在(a,b)内至少存在一点xyab)(xfy O若 M m,则 M 和 m 中至少有一个与端点值不等,不妨设,)(afM 则至少存在一点,),(ba使,)(Mf.0)(f注意注意:1)定理条件不全具备,结论不一定成立.1,010,)(x

3、xxxf则由费马引理得 1,1)(xxxf 1,0)(xxxfx1yOx1y1Ox1yOxyab)(xfy O不连续在 1,0不可导在)1,0()1()0(ff例如,例例1.证明方程0155 xx,15)(5xxxf.3)1(,1)0(ff,0)(0 xf,)1,0(011xxx)1(5)(4xxf),1,0(,0 x有且仅有一个小于1 的正实根.证证:1)存在性.则)(xf在 0,1 连续,且由介值定理知存在,)1,0(0 x使即方程有小于 1 的正根.0 x2)唯一性.假设另有,0)(1xf使在以)(xf10,xx为端点的区间满足罗尔定理条件,之间在10,xx至少存在一点,.0)(f使但矛

4、盾,故假设不真!设二、拉格朗日中值定理二、拉格朗日中值定理 )(1)在区间 a,b 上连续)(xfy 满足:(2)在区间(a,b)内可导至少存在一点,),(ba使.)()()(abafbff思路思路:利用逆向思维逆向思维找出一个满足罗尔定理条件的函数作辅助函数显然,)(x在a,b 上连续,在(a,b)内可导,且证证:问题转化为证)(x)(xfxabafbf)()()(a由罗尔定理知至少存在一点,),(ba,0)(使即定理结论成立.,)(babbfaafb)()(0)()()(abafbff证毕xyab)(xfy Oxyabafbf)()(),(,)()()(baabafbff拉格朗日中值定理的

5、有限增量形式:推论推论:若函数在区间 I 上满足,0)(xf则)(xf在 I 上必为常数.)(xf证证:在 I 上任取两点,)(,2121xxxx上用拉在,21xx格朗日中值公式,得0)()(12xfxf)(12xxf)(21xx)()(12xfxf由 的任意性知,21,xx)(xf在 I 上为常数.)10()(0 xxxfy,00 xxbxa令则例例2.证明等式.1,1,2arccosarcsinxxx证证:设,arccosarcsin)(xxxf上则在)1,1()(xf由推论可知Cxxxfarccosarcsin)(常数)令 x=0,得.2C又,2)1(f故所证等式在定义域 上成立.1,1

6、自证自证:),(x,2cotarcarctanxx211x211x0经验经验:欲证Ix时,)(0Cxf只需证在 I 上,0)(xf,0Ix 且.)(00Cxf使例例3.证明不等式证证:设,)1ln()(ttf上满足拉格朗日在则,0)(xtf中值定理条件,即因为故.)0()1ln(1xxxxx)0()(fxf)1ln(xxx0,11x xx1x)0()1ln(1xxxxxxxf0,)0)(因此应有三、柯西三、柯西(Cauchy)中值定理中值定理0)()()()()()(fFaFbFafbf)(分析分析:)(xf及(1)在闭区间 a,b 上连续(2)在开区间(a,b)内可导(3)在开区间(a,b)

7、内至少存在一点,),(ba使.)()()()()()(FfaFbFafbf满足:)(xF0)(xF)()(aFbF)(abFba0问题转化为证)()()()()()()(xfxFaFbFafbfx构造辅助函数构造辅助函数证证:作辅助函数)()()()()()()(xfxFaFbFafbfx)()()()()()()()(baFbFbFafaFbfa,),(,)(内可导在上连续在则babax且,),(ba使,0)(即由罗尔定理知,至少存在一点.)()()()()()(FfaFbFafbf思考思考:柯西定理的下述证法对吗?),(,)()()(baabfafbf),(,)()()(baabFaFbF

8、两个 不一定相同错错!上面两式相比即得结论.柯西定理的几何意义柯西定理的几何意义:)()()()()()(FfaFbFafbf)(F)(aF)()(tfytFx)(af)(bF)(bf)()(ddtFtfxy注意:弦的斜率切线斜率xyO)0()1(ff)0()1(FF例例4.设).0()1(2)(fff2)(01)0()1(fffxxxf)()(2,)(2xxF,)1,0(,1,0)(内可导在上连续在xf至少存在一点),1,0(使证证:问题转化为证设则)(,)(xFxf在 0,1 上满足柯西中值定理条件,因此在(0,1)内至少存在一点 ,使)(f)(F012即)0()1(2)(fff证明11l

9、ncos1lnlne1lnsinlnesin)e,1(,)()()1(e)1(e)FfFFff例例5.试证至少存在一点)e,1(使.lncos1sinlncos1sin 证证:法法1 用柯西中值定理.xxFxxfln)(,lnsin)(则 f(x),F(x)在 1,e 上满足柯西中值定理条件,令因此 11lncoslncos1sin即分析分析:例例5.试证至少存在一点)e,1(使.lncos1sin法法2 令xxflnsin)(则 f(x)在 1,e 上满足罗尔中值定理条件,e),1(使0)(fxlncos)(xf1sinx1lncos1sin 因此存在x1xln1sin 内容小结内容小结1.

10、微分中值定理的条件、结论及关系罗尔定理拉格朗日中值定理柯西中值定理)()(afbfxxF)()()(afbfxxF)(2.微分中值定理的应用(1)证明恒等式(2)证明不等式(3)证明有关中值问题的结论关键关键:利用逆向思维设辅助函数费马引理4412 3412思考与练习思考与练习1.填空题填空题 函数4)(xxf在区间 1,2 上满足拉格朗日定理条件,则中值._34152.设,0)(Cxf且在),0(内可导,证明至少存在一点,),0(使.cot)()(ff提示提示:由结论可知,只需证0cos)(sin)(ff即0sin)(xxxf验证)(xF在,0上满足罗尔定理条件.设xxfxFsin)()(3

11、.若)(xf可导,试证在其两个零点间一定有)()(xfxf的零点.提示提示:设,0)()(2121xxxfxf欲证:,),(21xx使0)()(ff只要证0)()(ffee亦即0)(exxxf作辅助函数,)(e)(xfxFx验证)(xF在,21xx上满足罗尔定理条件.4.思考:在0,00,sin)(12xxxxfx,0 x),0(,)0)()0()(xxffxf即xx12sin1sin2(,)cos1x),0(xxx111sinsin2cos当,0 0 x时.0cos1问问是否可由此得出?0coslim10 xx不能不能!因为)(x是依赖于 x 的一个特殊的函数.因此由上式得表示 x 从右侧以

12、任意方式趋于 0.0 x应用拉格朗日中值定理得上对函数作业作业P134 2,7,9,11(2)费马费马(1601 1665)费马 法国数学家,他是一位律师,数学只是他的业余爱好.他兴趣广泛,博览群书并善于思考,在数学上有许多重大贡献.他特别爱好数论,他提出的费马大定理:,2无整数解方程时当nnnzyxn历经358年,直到1993年才由美国普林斯顿大学的安德鲁.怀尔斯教授经过十年的潜心研究才得到解决.引理是后人从他研究解决最值的方法中提炼出来的.拉格朗日拉格朗日(1736 1813)法国数学家.他在方程论,解析函数论,及数论方面都作出了重要的贡献,近百余年来,数学中的许多成就都可直接或间接地追溯

13、到他的工作,他是对分析数学 产生全面影响的数学家之一.柯西柯西(1789 1857)法国数学家,他对数学的贡献主要集中在微积分学,柯 西全集共有 27 卷.其中最重要的是为巴黎综合学校编写的分析教程,无穷小分析概论,微积分在几何上的应用 等,有思想有创建,广泛而深远.对数学的影响他是经典分析的奠基人之一,他为微积分所奠定的基础推动了分析数学的发展.复变函数和微分方程方面.一生发表论文800余篇,著书 7 本,求证存在,)1,0(.0)()(ffn使1.设 1,0可导,且,0)1(f在连续,)1,0()(xf证证:设辅助函数)()(xfxxn,)1,0(因此至少存在显然)(x在 上满足罗尔定理条件,1,0)(即0)()(ffn使得)()(1ffnnn00)0(,0)(fxf设 证明对任意0,021xx有)()()(2121xfxfxxf证证:210 xx)()()(1221xfxfxxf12)(xf0)(121 fx)()()(2121xfxfxxf,(2122xxx2.不妨设)0()()()(1221fxfxfxxf)(21)011x11)(xf

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(高等数学课件D31微分中值定理.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|