1、2022-12-4自动控制原理实验教程5.1 典型环节频率特性测试典型环节频率特性测试1.实验目的实验目的(1)加深了解模拟典型环节频率特性的物理概念。)加深了解模拟典型环节频率特性的物理概念。(2)掌握模拟典型环节频率特性的测试方法。)掌握模拟典型环节频率特性的测试方法。(3)学会根据频率特性建立系统传递函数。)学会根据频率特性建立系统传递函数。(4)了解模拟典型环节的伯德图与理想环节的不同,)了解模拟典型环节的伯德图与理想环节的不同,并确定近似条件。并确定近似条件。第第5章章 线性系统的频域分析法线性系统的频域分析法2022-12-4自动控制原理实验教程2.实验原理实验原理(1)频域法测试
2、系统或环节频率特性)频域法测试系统或环节频率特性 利用频域法测试系统的频率特性,也是建立系统数利用频域法测试系统的频率特性,也是建立系统数学模型的一种常用方法。频域测试法是由正弦信号源提学模型的一种常用方法。频域测试法是由正弦信号源提供不同频率的正弦信号,作用于被测对象,测取在不同供不同频率的正弦信号,作用于被测对象,测取在不同频率时被测对象的稳态输出信号与正弦输入信号的幅值频率时被测对象的稳态输出信号与正弦输入信号的幅值比和相位差,从而求得被测对象的频率特性曲线,测试比和相位差,从而求得被测对象的频率特性曲线,测试原理图如图原理图如图5-1所示,测试过程中要注意频率范围的选取。所示,测试过程
3、中要注意频率范围的选取。2022-12-4自动控制原理实验教程(2)由实验频率特性确定最小相位传递函数)由实验频率特性确定最小相位传递函数根据实验测试数据绘制系统开环频率特性,然后确定系根据实验测试数据绘制系统开环频率特性,然后确定系统开环传递函数,步骤如下:统开环传递函数,步骤如下:1)将用实验方法取得的伯德图用斜率为的直线段近似,)将用实验方法取得的伯德图用斜率为的直线段近似,得到对数幅频渐近特性曲线。得到对数幅频渐近特性曲线。2)根据低频段对数幅频特性的斜率确定系统开环传递)根据低频段对数幅频特性的斜率确定系统开环传递函数中含有串联积分环节的个数。若有个积分环节,则函数中含有串联积分环节
4、的个数。若有个积分环节,则低频段渐近线的斜率为。低频段渐近线的斜率为。3)根据在)根据在0 dB轴以上部分的对象幅频特性的形状与相轴以上部分的对象幅频特性的形状与相应的分贝值、频率值确定系统的开环增益应的分贝值、频率值确定系统的开环增益K。2022-12-4自动控制原理实验教程4)根据对数幅频渐近特性曲线在转折频率处的斜率变)根据对数幅频渐近特性曲线在转折频率处的斜率变化,确定系统的串联环节。化,确定系统的串联环节。惯性环节在转折频率处斜率减小惯性环节在转折频率处斜率减小20dB/dec;一阶微分环;一阶微分环节在转折频率处斜率增加节在转折频率处斜率增加20dB/dec;振荡环节在转折频;振荡
5、环节在转折频率处斜率减小率处斜率减小40dB/dec;二阶振荡环节在转折频率处斜;二阶振荡环节在转折频率处斜率增加率增加40dB/dec。5)进一步根据最小相位系统对数幅频特性的斜率与相)进一步根据最小相位系统对数幅频特性的斜率与相频特性之间的单值对应关系,检验系统是否串联有迟后频特性之间的单值对应关系,检验系统是否串联有迟后环节,或修正渐近线。环节,或修正渐近线。6)根据以上步骤得到的传递函数使用)根据以上步骤得到的传递函数使用MATLAB软件绘软件绘制制Bode图,与实验所得的频率特性曲线比较,若能较好图,与实验所得的频率特性曲线比较,若能较好地吻合,说明实验成功,否则分析实验误差原因后再
6、重地吻合,说明实验成功,否则分析实验误差原因后再重测。测。2022-12-4自动控制原理实验教程3.实验内容与步骤实验内容与步骤(1)比例环节频率特性测试)比例环节频率特性测试在输入端接上高频正弦发生器,设定正弦波信号幅值为在输入端接上高频正弦发生器,设定正弦波信号幅值为0.05 v,用双踪示波器观察并记录输出与输入幅值的比和,用双踪示波器观察并记录输出与输入幅值的比和相位差。相位差。2022-12-4自动控制原理实验教程 测试正弦信号从低频开始,开始频率可随着比例系测试正弦信号从低频开始,开始频率可随着比例系数的增高而降低。当数的增高而降低。当R配置配置10M、1M或或100k不同值不同值时
7、,开始频率可分别为时,开始频率可分别为1kHz、10kz或或100kz。然后逐。然后逐步提高测试正弦信号的频率,在伯德图上转折频率处,步提高测试正弦信号的频率,在伯德图上转折频率处,输出振幅减小或相位滞后,此时应仔细测定。然后增大输出振幅减小或相位滞后,此时应仔细测定。然后增大测试信号频率间距,直到输出滞后于输入的相位约有为测试信号频率间距,直到输出滞后于输入的相位约有为止。止。2022-12-4自动控制原理实验教程(2)惯性环节频率特性测试)惯性环节频率特性测试设置正弦输入信号的幅值为设置正弦输入信号的幅值为1v,频率从,频率从1z开始逐步提高,开始逐步提高,到到16z附近须仔细测定,一直测
8、试到频率约为附近须仔细测定,一直测试到频率约为300z为止,为止,或到难于检测出时为止。或到难于检测出时为止。2022-12-4自动控制原理实验教程(3)积分环节频率特性测试 选定450z频率开始,逐步降低频率测试。输入正弦信号的幅值可分别整定为0.1、0.5和2.5,最低测试频率分别为0.5z、2z和10z。在降低输入正弦信号频率过程中,输出正弦波开始出现“平顶”现象时,须仔细测试。2022-12-4自动控制原理实验教程(4)比例微分环节频率特性测试)比例微分环节频率特性测试输入正弦波测试信号的频率可从输入正弦波测试信号的频率可从1Hz开始,直到大于开始,直到大于1z为止。在幅值变化方向或相
9、位差变化较大时刻处,频率为止。在幅值变化方向或相位差变化较大时刻处,频率变化要小一些,多测几组。用双踪示波器观察并记录输出变化要小一些,多测几组。用双踪示波器观察并记录输出与输入正弦波的幅值比及相位差。与输入正弦波的幅值比及相位差。2022-12-4自动控制原理实验教程5.实验能力要求实验能力要求(1)学会典型环节频率特性测试方法,能够根据不同环)学会典型环节频率特性测试方法,能够根据不同环节,不同特征参数确定测试信号的幅值和频率;节,不同特征参数确定测试信号的幅值和频率;(2)在测试过程中能够抓住关键区域测试,通过输出信)在测试过程中能够抓住关键区域测试,通过输出信号幅值和相位变化确定转折频
10、率;号幅值和相位变化确定转折频率;(3)能够根据实际测量数据绘制伯德图;)能够根据实际测量数据绘制伯德图;(4)根据实测伯德图,作渐近处理,推算传递函数;)根据实测伯德图,作渐近处理,推算传递函数;(5)与理想环节相比,确定用理想环节数学模型近似描)与理想环节相比,确定用理想环节数学模型近似描述模拟环节的条件。述模拟环节的条件。2022-12-4自动控制原理实验教程1.实验目的实验目的(1)加深了解控制系统频率特性的物理概念。(2)熟练掌握控制系统频率特性的测量方法。(3)巩固根据系统频率特性建立系统数学模型。(4)了解实际频率特性与理想特性的差异,确定近似条件。2.实验原理实验原理 根据系统
11、理想的对数幅频特性渐近线的转折频率和谐振峰值,确定输入正弦信号的频率变化范围和测试点,通常取低于转折频率10倍左右的频率作为开始测试的最低频率,取高于转折频率10倍左右的频率为终止测试的最高频率。在峰值频率和转折频率附近,应多测几个点。5.2 控制系统频率特性测试控制系统频率特性测试2022-12-4自动控制原理实验教程3.实验内容实验内容二阶控制系统模拟电路图、结构图所示。二阶控制系统模拟电路图、结构图所示。2022-12-4自动控制原理实验教程4.实验步骤实验步骤(1)连接被测系统的模拟电路,进行计算机通信测试。)连接被测系统的模拟电路,进行计算机通信测试。(2)打开测试软件,选择正弦波输
12、入测试信号,设置其)打开测试软件,选择正弦波输入测试信号,设置其幅值为幅值为1.0v,频率从低频开始,然后逐步提高。观察输出,频率从低频开始,然后逐步提高。观察输出信号幅值和相位的变化,记录输出幅值与输入幅值的比信号幅值和相位的变化,记录输出幅值与输入幅值的比Uom/Uim及其相位差及其相位差 。在这两组数据变化较大的频段,。在这两组数据变化较大的频段,应该多测试几组数据,仔细测定,直到输出滞后输入的相应该多测试几组数据,仔细测定,直到输出滞后输入的相位为止。测试频率可以设定以下频率:位为止。测试频率可以设定以下频率:0.1Hz,1Hz,5Hz,8Hz,10Hz,15Hz,20Hz,25Hz,
13、30Hz,40Hz,50Hz,80Hz,100Hz,150Hz。(4)将测试数据处理,绘制系统幅频特性曲线和相频特)将测试数据处理,绘制系统幅频特性曲线和相频特性曲线。测出谐振峰值性曲线。测出谐振峰值Mr、峰值频率、峰值频率r、带宽频率、带宽频率b、剪切频率剪切频率c和相角裕度。和相角裕度。(3)测量系统阶跃响应曲线,记录其动态性能指标:超)测量系统阶跃响应曲线,记录其动态性能指标:超调量调量Mp和调整时间和调整时间ts。)10(1)(2sssG2022-12-4自动控制原理实验教程6.实验能力要求实验能力要求(1)熟练掌握控制系统频率特性的测量方法,能够正)熟练掌握控制系统频率特性的测量方法
14、,能够正确选择测试频率,在测试过程中,能够根据测试数据确选择测试频率,在测试过程中,能够根据测试数据的变化判断系统的转折频率点。的变化判断系统的转折频率点。(2)根据原始测量数据进行必要的数据转换,绘制)根据原始测量数据进行必要的数据转换,绘制Bode图。图。(3)根据系统幅频特性,作渐近处理,建立系统数学)根据系统幅频特性,作渐近处理,建立系统数学模型。模型。(4)比较实测频率特性与理想频率特性,分析测量误)比较实测频率特性与理想频率特性,分析测量误差。差。(5)分析二阶系统的频域指标与动态性能指标之间的)分析二阶系统的频域指标与动态性能指标之间的关系。关系。2022-12-4自动控制原理实
15、验教程1.实验目的实验目的(1)熟练掌握使用MATLAB命令绘制控制系统Nyquist图的方法。(2)能够分析控制系统Nyquist图的基本规律。(3)加深理解控制系统乃奎斯特稳定性判据的实际应用。(4)学会利用奈氏图设计控制系统。2.实验原理实验原理奈奎斯特稳定性判据(又称奈氏判据)奈奎斯特稳定性判据(又称奈氏判据)反馈控制系统稳定的充分必要条件是当从变到时,开反馈控制系统稳定的充分必要条件是当从变到时,开环系统的奈氏曲线不穿过点且逆时针包围临界点点的圈数环系统的奈氏曲线不穿过点且逆时针包围临界点点的圈数R等于开环传递函数的正实部极点数。等于开环传递函数的正实部极点数。5.3 基于基于MAT
16、LAB控制系统的控制系统的Nyquist图及其稳定性分析图及其稳定性分析2022-12-4自动控制原理实验教程 奈奎斯特稳定性判据是利用系统开环频率特性来判断闭环系统稳定性的一个判据,便于研究当系统结构参数改变时对系统稳定性的影响。1)对于开环稳定的系统,闭环系统稳定的充分必要条件是:开环系统的奈氏曲线不包围点。反之,则闭环系统是不稳定的。2)对于开环不稳定的系统,有个开环极点位于右半平面,则闭环系统稳定的充分必要条件是:当从变到时,开环系统的奈氏曲线逆时针包围点次。2022-12-4自动控制原理实验教程3.实验内容实验内容(1)绘制控制系统Nyquist图给定系统开环传递函数的分子系数多项式
17、num和分母系数多项式,在MATLAB软件中nyquist()函数用来绘制系统的奈氏曲线,函数调用格式有三种。格式一格式一:nyquist(num,den)作Nyquist图,角频率向量的范围自动设定,默认的范围为(,)。2022-12-4自动控制原理实验教程格式二格式二:nyquist(num,den,w)作开环系统的奈氏曲线,角频率向量的范围可以人工给定。为对数等分,用对数等分函数logspace()完成,其调用格式为:logspace(d1,d2,n),表示将变量作对数等分,命令中d1,d2为10 d1 10 d2之间的变量范围,n为等分点数。格式三格式三:re,im,w=nyquist
18、(num,den)返回变量格式不作曲线,其中re为频率响应的实部,im为频率响应的虚部,w是频率点。【范例5-1】系统开环传递函数,绘制其Nyquist图。【范例5-1】系统开环传递函数10210)(2sssG,绘制其Nyquist图。2022-12-4自动控制原理实验教程(2)根据奈氏曲线判定系统的稳定性)根据奈氏曲线判定系统的稳定性【范例【范例5-2】已知】已知绘制绘制Nyquist图,判定系统的稳定性。图,判定系统的稳定性。为了应用奈氏曲线稳定判据对闭环系统判稳,必须知道为了应用奈氏曲线稳定判据对闭环系统判稳,必须知道G(s)H(s)不稳定根个数不稳定根个数p是否为是否为0。可以通过求其
19、特征方。可以通过求其特征方程的根程的根roots()函数求得。函数求得。p=1 2 1 0.5;roots(p)5.025.0)()(23ssssHsG【分析】由于系统奈氏曲线没有包围且远离(-1,j 0)点,且p=0,因此系统闭环稳定。2022-12-4自动控制原理实验教程5.实验能力要求实验能力要求(1)熟练使用)熟练使用MATLAB绘制控制系统绘制控制系统Nyquist曲线的曲线的方法,掌握函数方法,掌握函数nyquist()的三种调用格式,并灵活运的三种调用格式,并灵活运用。用。(2)学会处理奈氏图形,使曲线完全显示)学会处理奈氏图形,使曲线完全显示从从变化变化至至+的形状。的形状。(
20、3)熟练应用奈氏稳定判据,根据)熟练应用奈氏稳定判据,根据Nyquist图分析控制图分析控制系统的稳定性。系统的稳定性。(4)改变系统开环增益或零极点,观察系统)改变系统开环增益或零极点,观察系统Nyquist图图发生的变化以及系统稳定性的影响。发生的变化以及系统稳定性的影响。2022-12-4自动控制原理实验教程1.实验目的实验目的(1)熟练掌握运用)熟练掌握运用MATLAB命令绘制控制系统伯德图的方命令绘制控制系统伯德图的方法。法。(2)了解系统伯德图的一般规律及其频域指标的获取方法。)了解系统伯德图的一般规律及其频域指标的获取方法。(3)熟练掌握运用伯德图分析控制系统稳定性的方法。)熟练
21、掌握运用伯德图分析控制系统稳定性的方法。2.实验原理实验原理 对数频率稳定性判据的内容为:对数频率稳定性判据的内容为:闭环系统稳定的充分必要条件是当从零变化到时,时,闭环系统稳定的充分必要条件是当从零变化到时,时,在开环系统对数幅频特性曲线的频段内,相频特性穿越的在开环系统对数幅频特性曲线的频段内,相频特性穿越的次数为。其中次数为。其中 ,为正穿越次数,为负穿越次数,为开环传,为正穿越次数,为负穿越次数,为开环传递函数的正实部极点数。递函数的正实部极点数。5.4 基于基于MATLAB控制系统的伯德图及其频域分析控制系统的伯德图及其频域分析2022-12-4自动控制原理实验教程1)相角裕度 对于
22、闭环稳定系统,如果开环相频特性再滞后度,则系统将变为临界稳定。当 0时,相角裕度为正,闭环系统稳定。当 =0 时,表示奈氏曲线恰好通过点,系统处于临界稳定状态。当 0时,闭环系统稳定。当h(dB)=0时,系统处于临界稳定状态。当h(dB)0,闭环系统不稳定。2022-12-4自动控制原理实验教程3.实验内容实验内容(1)绘制连续系统的伯德图 格式一:bode(num,den)在当前图形窗口中直接绘制系统的Bode图,角频率向量的范围自动设定。格式二:bode(num,den,w)用于绘制的系统Bode图,为输入给定角频率,用来定义绘制Bode图时的频率范围或者频率点。为对数等分,用对数等分函数
23、logspace()完成,其调用格式为:logspace(d1,d2,n),表示将变量作对数等分,命令中d1,d2为10 d1 10 d2之间的变量范围,n为等分点数。2022-12-4自动控制原理实验教程格式三格式三:mag,phase,w=bode(mun,den)返回变量格式不作图,计算系统Bode图的输出数据,输出变量mag是系统Bode图的幅值向量,注意此幅值不是分贝值,须用magdb=20*log(mag)转换;phase为Bode图的幅角向量,单位为();是系统Bode图的频率向量,单位是rad/s。【范例5-3】已知控制系统开环传递函数,绘制其Bode图。10210)()(2s
24、ssHsG2022-12-4自动控制原理实验教程(2)计算系统的稳定裕度,包括幅值裕度Gm和相位裕度Pm。函数margin()可以从系统频率响应中计算系统的稳定裕度及其对应的频率。格式一:格式一:margin(num,den)给定开环系统的数学模型,作Bode图,并在图上标注幅值裕度Gm和对应频率g,相位裕度Pm和对应的频率c。格式二:格式二:Gm,Pm,g,wc=margin(num,den)返回变量格式,不作图。格式三:格式三:Gm,Pm,g,wc=margin(m,p,w)给定频率特性的参数向量:幅值m、相位p和频率,由插值法计算Gm及g、Pm及c。2022-12-4自动控制原理实验教程
25、【范例5-5】已知单位负反馈系统的开环传递函数,求系统的稳定裕度。(3)系统对数频率稳定性分析【范例5-6】系统开环传递函数,试分析系统的稳定性。)2)(1(2)(ssssG)11.0)(15.0()(sssksG2022-12-4自动控制原理实验教程5.实验能力要求实验能力要求(1)熟练使用)熟练使用MATLAB绘制控制系统伯德图的方法,掌绘制控制系统伯德图的方法,掌握函数握函数bode()和和margin()的三种调用格式,并灵活运用。的三种调用格式,并灵活运用。(2)学会根据系统伯德图,作渐近处理,建立系统数学)学会根据系统伯德图,作渐近处理,建立系统数学模型。模型。(3)熟练应用对数频率稳定判据,根据伯德图分析控制)熟练应用对数频率稳定判据,根据伯德图分析控制系统的稳定性。系统的稳定性。(4)分析系统开环增益、零极点的变化对系统稳定裕度)分析系统开环增益、零极点的变化对系统稳定裕度指标的影响。指标的影响。