高中数学:空间向量运算的坐标表示课件.ppt

上传人(卖家):晟晟文业 文档编号:4467254 上传时间:2022-12-11 格式:PPT 页数:15 大小:258.08KB
下载 相关 举报
高中数学:空间向量运算的坐标表示课件.ppt_第1页
第1页 / 共15页
高中数学:空间向量运算的坐标表示课件.ppt_第2页
第2页 / 共15页
高中数学:空间向量运算的坐标表示课件.ppt_第3页
第3页 / 共15页
高中数学:空间向量运算的坐标表示课件.ppt_第4页
第4页 / 共15页
高中数学:空间向量运算的坐标表示课件.ppt_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、空间向量运算的坐标表示一、向量的直角坐标运算一、向量的直角坐标运算则设),(),(321321bbbbaaaa;ab;ab;a;a b/;.ab;ab112233(,)ab ab ab112233(,)ab ab ab123(,),()aaaR1 12233a ba ba b112233,()ab ab abR112222/ababab1 122330a ba ba b二、距离与夹角二、距离与夹角2222123|aa aaaa2222123|bb bbbb1.1.距离公式距离公式(1 1)向量的长度(模)公式)向量的长度(模)公式注意:此公式的几何意义是表示长方体的对注意:此公式的几何意义是表

2、示长方体的对角线的长度。角线的长度。|ABABAB AB212121(,)xxyyzz222212121()()()xxyyzz222,212121()()()A Bdxxyyzz在空间直角坐标系中,已知、在空间直角坐标系中,已知、,则,则111(,)A xyz222(,)B xyz(2)空间两点间的距离公式)空间两点间的距离公式cos,|a ba bab1 1223 3222222123123;a ba ba baaabbb2.2.两个向量夹角公式两个向量夹角公式注意:注意:(1)当)当 时,同向;时,同向;(2)当)当 时,反向;时,反向;(3)当)当 时,。时,。cos,1 a b与 a

3、bcos,1 a b与 abcos,0 a bab思考:当思考:当 及及 时,时,的夹角在什么范围内?的夹角在什么范围内?1cos,0 a b,10cos a b练习一:练习一:1.求下列两个向量的夹角的余弦:求下列两个向量的夹角的余弦:(1)(2,3,3),(1,0,0);ab(2)(1,1,1),(1,0,1);ab2.求下列两点间的距离:求下列两点间的距离:(1)(1,1,0),(1,1,1);AB(2)(3,1,5),(0,2,3).CD三、应用举例三、应用举例例例1已知、,求:已知、,求:(1)线段的中点坐标和长度;)线段的中点坐标和长度;(3,3,1)A(1,0,5)BAB解:设是

4、的中点,则解:设是的中点,则(,)M xy zAB113()(3,3,1)1,0,52,3,222 OMOAOB点的坐标是点的坐标是.M32,32222,(13)(03)(5 1)29.A BdOABMzxxkw(2)到两点距离相等的点的)到两点距离相等的点的坐标满足的条件。坐标满足的条件。、AB(,)P xy z,xy z解:点到的距离相等,则解:点到的距离相等,则(,)P xy z 、AB222222(3)(3)(1)(1)(0)(5),xyzxyz化简整理,得化简整理,得46870 xyz即到两点距离相等的点的坐标满即到两点距离相等的点的坐标满足的条件是足的条件是 、AB(,)xy z4

5、6870 xyz例例2如图,在正方体中,如图,在正方体中,求与所成的角的余弦值。,求与所成的角的余弦值。1111ABCDA BC D11B E11114A BD F1BE1DFF1E1C1B1A1D1DABCyzxO解:设正方体的棱长为解:设正方体的棱长为1,如图建,如图建立空间直角坐标系,则立空间直角坐标系,则Oxyz13(1,1,0),1,1,4BE11(0,0,0),0,1.4,DF1311,1(1,1,0)0,1,44BE 例例2如图,在正方体中,如图,在正方体中,求与所成的角的余弦值。,求与所成的角的余弦值。1111ABCDA BC D11B E11114A BD F1BE1DFF1

6、E1C1B1A1D1DABCxyzO1110,1(0,0,0)0,1.44,DF111115001 1,4416 BE DF111717|,|.44 BEDF111111151516cos,.17|171744 BE DFBEDFBEDF练习二:用向量方法)的距离。到直线求点求的中点,分别是、,正方体(EFA)2,1)ADCCFEABCDDCBA1111111EFABFEC1B1A1D1DABC练习三:练习三:。求证:的值;求的长;求的中点,、分别为、,棱,中,底面:直三棱柱如图MCBA3)CB,cos2)BN1)AABANM2AA90BCA1CBCAABC,11111111o111BACBAABCBCC1A1B1ANM思考题:。的面积方法求用向量(、(已知SABC),5,1,1(),6,1,2B)3,2,0AC四、课堂小结:四、课堂小结:1.基本知识:基本知识:(1)向量的长度公式与两点间的距离公式;)向量的长度公式与两点间的距离公式;(2)两个向量的夹角公式。)两个向量的夹角公式。2.思想方法:用向量计算或证明几何问题思想方法:用向量计算或证明几何问题时,可以先建立直角坐标系,然后把向量、点坐时,可以先建立直角坐标系,然后把向量、点坐标化,借助向量的直角坐标运算法则进行计算或标化,借助向量的直角坐标运算法则进行计算或证明。证明。Homework:P107:1zxxkw

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文(高中数学:空间向量运算的坐标表示课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|