第三章2随机变量的分布函数课件.ppt

上传人(卖家):晟晟文业 文档编号:4515345 上传时间:2022-12-16 格式:PPT 页数:39 大小:1.09MB
下载 相关 举报
第三章2随机变量的分布函数课件.ppt_第1页
第1页 / 共39页
第三章2随机变量的分布函数课件.ppt_第2页
第2页 / 共39页
第三章2随机变量的分布函数课件.ppt_第3页
第3页 / 共39页
第三章2随机变量的分布函数课件.ppt_第4页
第4页 / 共39页
第三章2随机变量的分布函数课件.ppt_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、 问:问:在上在上 式中,式中,X,x 皆为变量皆为变量.二者有什二者有什么区别?么区别?x 起什么作用?起什么作用?F(x)是不是概率?是不是概率?X是随机变量是随机变量,x是参变量是参变量.F(x)是是r.v X取值不大于取值不大于 x 的概率的概率.xxXPxF),()(由定义,对任意实数由定义,对任意实数 x1x2,随机点落,随机点落在区间(在区间(x1,x2 的概率为:的概率为:P x1X x2 =P X x2 -P X x1 =F(x2)-F(x1)因此,只要知道了随机变量因此,只要知道了随机变量X的分布函的分布函数,数,它的统计特性就可以得到全面的描述它的统计特性就可以得到全面的

2、描述.xxXPxF),()(分布函数是一个普通的函数,正是分布函数是一个普通的函数,正是通过它,我们可以用数学分析的工具来通过它,我们可以用数学分析的工具来研究研究 随机变量随机变量.xxXPxF),()(二、离散型二、离散型 r.v的分布函数的分布函数设离散型设离散型r.vX 的概率分布列是的概率分布列是P X=xk =pk ,k=1,2,3,xxkkp则则 F(x)=P(X x)=由于由于F(x)是是 X 取取 的诸值的诸值 xk 的概率之和,的概率之和,故又称故又称 F(x)为累积概率函数为累积概率函数.x离散型随机变量分布函数的计算举例离散型随机变量分布函数的计算举例当当 x0 时,时

3、,X x =,故故 F(x)=0例例1.,求,求 F(x).当当 0 x 1 时,时,F(x)=P(X x)=P(X=0)=31F(x)=P(X x)解解:X 0 1 2 P216131当当 1 x 2 时,时,F(x)=P(X=0)+P(X=1)=+=316121当当 x 2 时,时,F(x)=P(X=0)+P(X=1)+P(X=2)=1例例1.,求,求 F(x).F(x)=P(X x)解解:X 0 1 2 P216131故故注意右连续注意右连续下面我们从图形上来看一下下面我们从图形上来看一下.2,121,2110,310,0)(xxxxxF三、分布函数的性质三、分布函数的性质(3)F(x)

4、非降,即若非降,即若 x1x2,则,则F(x1)F(x2);(2)F()=F(x)=0 xlim(4)F(x)右连续,即右连续,即)()(lim00 xFxFxx 如果一个函数具有上述性质,则一定是某如果一个函数具有上述性质,则一定是某个个r.v X 的分布函数的分布函数.也就是说,性质也就是说,性质(1)-(4)是是鉴别一个函数是否是某鉴别一个函数是否是某r.v的分布函数的充分的分布函数的充分必要条件必要条件.F()=F(x)=1xlim(1)0F(x)1,x+;试说明试说明F(x)能否是某个能否是某个r.v 的分布函数的分布函数.例例2.设有函数设有函数 F(x)其它00sin)(xxxF

5、 注意到函数注意到函数 F(x)在在 上下降,上下降,不满足性质不满足性质(1),故,故F(x)不能是分布函数不能是分布函数.,2不满足性质不满足性质(2),可见可见F(x)也不能是也不能是r.v 的的分布函数分布函数.或者或者0)(lim)(xFFx解:解:例例3.在区间在区间 0,a 上任意投掷一个质点,上任意投掷一个质点,以以 X 表示这个质点的坐标表示这个质点的坐标.设这个质点落在设这个质点落在 0,a中任意小区间内的概率与这个小区间的中任意小区间内的概率与这个小区间的长度成正比长度成正比,试求,试求 X 的分布函数的分布函数.设设 F(x)为为 X 的分布函数,的分布函数,当当 x

6、a 时,时,F(x)=1 解:解:当当 0 x a 时,时,P(0 X x)=kx (k为常数为常数)由于由于 P(0 X a)=1 ka=1,k=1/a0a F(x)=P(X x)=P(X0)+P(0 X x)=x/a 例例3 在区间在区间 0,a 上任意投掷一个质点,上任意投掷一个质点,以以 X 表示这个质点的坐标表示这个质点的坐标.设这个质点落在设这个质点落在 0,a中任意小区间内的概率与这个小区间的中任意小区间内的概率与这个小区间的长度成正比,长度成正比,试求试求 X 的分布函数的分布函数.设设 F(x)为为 X 的分布函数,的分布函数,解解:axaxaxxxF,10,0,0)(例例3

7、.在区间在区间 0,a 上任意投掷一个质点,上任意投掷一个质点,以以 X 表示这个质点的坐标表示这个质点的坐标.设这个质点落在设这个质点落在 0,a中任意小区间内的概率与这个小区间的中任意小区间内的概率与这个小区间的长度成正比长度成正比,试求,试求 X 的分布函数的分布函数.这就是在区间这就是在区间 0,a上服从均匀分布上服从均匀分布的随机变量的分布函数的随机变量的分布函数.连续型随机变量连续型随机变量X所有可能取值充满所有可能取值充满一个区间一个区间,对这种类型的随机变量对这种类型的随机变量,不能不能象离散型随机变量那样象离散型随机变量那样,以指定它取每以指定它取每个值概率的方式个值概率的方

8、式,去给出其概率分布去给出其概率分布,而是通过给出所谓而是通过给出所谓“概率密度函数概率密度函数”的的方式方式.下面我们就来介绍对连续型随机变量下面我们就来介绍对连续型随机变量的描述方法的描述方法.连续型随机变量、概率密度定义连续型随机变量、概率密度定义 设设F(x)是随机变量是随机变量X的分布函数,若存的分布函数,若存在一个非负的函数在一个非负的函数f(x),对任何实数对任何实数x,有,有 ,则称,则称X为连续型随机为连续型随机变量,同时称变量,同时称f(x)为为X的概率密度函数,简称概的概率密度函数,简称概率密度。率密度。dttfxFx )()(f(x)xoy由定义知:由定义知:1.连续型

9、随机变量的分布函数连续型随机变量的分布函数F(x)是连续函数是连续函数.2.对对f(x)的连续点,有的连续点,有)()(xfxF由此由此 F(x)与与f(x)可以互推。可以互推。概率密度函数的性质概率密度函数的性质1.0)(xf2.1)(dxxf这两条性质是判定一个这两条性质是判定一个函数函数 f(x)是否为某是否为某r.vX的的概率密度函数的充要条件概率密度函数的充要条件.o f(x)xy3dxxfxFxFxXxPxx211221)()()()(f(x)xoyx1x2 故故 X的密度的密度 f(x)在在 x 这一点的值,恰好是这一点的值,恰好是X落在区间落在区间 上的概率与区间长度上的概率与

10、区间长度 之比的极限之比的极限.这里,如果把概率理解为质量,这里,如果把概率理解为质量,f(x)相当于线密度相当于线密度.x,(xxx 若若x是是 f(x)的连续点,则:的连续点,则:xxxXxPx )(lim0 x)(lim0 xxxxdttf=f(x)4.对对 f(x)的进一步理解的进一步理解:要注意的是,密度函数要注意的是,密度函数 f(x)在某点处在某点处a的高度,并不反映的高度,并不反映X取值的概率取值的概率.但是,这但是,这个高度越大,则个高度越大,则X取取a附近的值的概率就越附近的值的概率就越大大.也可以说,在某点密度曲线的高度反也可以说,在某点密度曲线的高度反映了概率集中在该点

11、附近的程度映了概率集中在该点附近的程度.f(x)xo若不计高阶无穷小,有:若不计高阶无穷小,有:xxfxxXxP )(它表示随机变量它表示随机变量 X 取值于取值于 的的概率近似等于概率近似等于 .,(xxxxxf)(xxf)(在连续型在连续型r.v理论中所起的作用与理论中所起的作用与kkpxXP)(在离散型在离散型r.v理论中所起的理论中所起的作用相类似作用相类似.连续型连续型r.v取任一指定值的概率为取任一指定值的概率为0.即:即:,0)(aXPa为任一指定值为任一指定值这是因为这是因为需要指出的是需要指出的是:.0),()()()(0 xxaFaFaXxaPaXP 由于连续型随机变量的分

12、布函数是连续函数,由于连续型随机变量的分布函数是连续函数,00)()(limxaFaFx从而从而P(X=a)=0.P(X=a)=0的充分必要条件是的充分必要条件是F(x)是是连续函数。连续函数。任意任意aR。由此得由此得,)()(bXaPbXaP)(bXaP1)对连续型对连续型 r.v X,有有)(bXaP2)由由P(X=a)=0 可推知可推知 1)()()(aXPdxxfaRXP而而 X=a 并非不可能事件并非不可能事件并非必然事件并非必然事件aRX称称A为为几乎不可能事件几乎不可能事件,B为为几乎必然事件几乎必然事件.可见,可见,由由P(A)=0,不能推出不能推出 A由由P(B)=1,不能

13、推出不能推出 B=S下面给出几个下面给出几个r.v的例子的例子.由于连续型由于连续型 r.v唯一被它的唯一被它的密度函数密度函数所确所确定定.所以,若已知密度函数,该连续型所以,若已知密度函数,该连续型 r.v的概率规律就得到了全面描述的概率规律就得到了全面描述.f(x)xoxdttfxF)()(大家一起来作下面的练习大家一起来作下面的练习.求求 F(x).其它,021,210,)(xxxxxfX例例2 设设由于由于f(x)是分段是分段表达的,求表达的,求F(x)时时注意分段求注意分段求.xdttfxF)()(=01xtdt0 xdtttdt110)2(0 x10 x21 x2xF(x)其它,

14、021,210,)(xxxxxfX对连续型对连续型r.v,若已知,若已知F(x),我们通过求导我们通过求导也可求出也可求出 f(x),请看下例请看下例.2,121,21210,20,0)(22xxxxxxxxF即即1110002xxxxxF,)(例例3 设设r.vX的分布函数为的分布函数为(1)求求X取值在区间取值在区间 (0.3,0.7)的概率;的概率;(2)求求X的概率密度的概率密度.解解:(1)P(0.3X0.7)=F(0.7)-F(0.3)=0.72-0.32=0.4dxxdF)(2)f(x)=注意到注意到F(x)在在1处导数不存在,根据改变被积函数处导数不存在,根据改变被积函数在个别

15、点处的值不影响积分结果的性质,可以在在个别点处的值不影响积分结果的性质,可以在 没意义的点处,任意规定没意义的点处,任意规定 的值的值.)(xF)(xF其它,010,2xx几种重要的连续型随机变量几种重要的连续型随机变量均匀分布均匀分布(1)若)若 r.vX的概率密度为:的概率密度为:则称则称X服从区间服从区间 a,b 上的均匀分布,记作:上的均匀分布,记作:X U(a,b)(xfab)(,)(babxaabxf 其其它它01它的实际背景是:它的实际背景是:r.v X 取值在区间取值在区间a,b 上,上,并且取值在并且取值在a,b中任意小区间内的概率与这个中任意小区间内的概率与这个小区间的长度

16、成正比小区间的长度成正比.则则 X 具有具有a,b上的均匀上的均匀分布分布.分布函数为分布函数为:.,1,0)(bxbxaabaxaxxF f(x)0,11badxabdxxf)(满足概率密度性质。满足概率密度性质。若若XU a,b,(x1,x2)为为a,b的任意子区间,则的任意子区间,则)()(12211121xxabdxabxXxPxx 公交线路上两辆公共汽车前后通过某汽公交线路上两辆公共汽车前后通过某汽车停车站的时间,即乘客的候车时间等车停车站的时间,即乘客的候车时间等.均匀分布常见于下列情形:均匀分布常见于下列情形:如在数值计算中,由于四舍五如在数值计算中,由于四舍五 入,小数入,小数

17、点后某一位小数引入的误差;点后某一位小数引入的误差;例例4.某公共汽车站从上午某公共汽车站从上午7时起,每时起,每15分钟来分钟来一班车,即一班车,即 7:00,7:15,7:30,7:45 等时刻等时刻有汽车到达此站,如果乘客到达此站时间有汽车到达此站,如果乘客到达此站时间 X 是是7:00 到到 7:30 之间的均匀随机变量之间的均匀随机变量,试求他候车试求他候车时间少于时间少于5 分钟的概率分钟的概率.解:解:依题意,依题意,X U(0,30)以以7:00为起点为起点0,以分为单位,以分为单位其它,0300,301)(xxf 为使候车时间为使候车时间X少于少于 5 分钟,乘客必须在分钟,

18、乘客必须在 7:10 到到 7:15 之间,或在之间,或在7:25 到到 7:30 之间到之间到达车站达车站.所求概率为:所求概率为:从上午从上午7时起,每时起,每15分钟来一班车,即分钟来一班车,即 7:00,7:15,7:30等时刻有汽车到达汽车站,等时刻有汽车到达汽车站,30251510XPXP其它,0300,301)(xxf3130130130251510dxdx即乘客候车时间少于即乘客候车时间少于5 分钟的概率是分钟的概率是1/3.例例5.设设K在在0,5上服从均匀分布,上服从均匀分布,求方程求方程4x2+4Kx+K+2=0有实根的概率。有实根的概率。解:解:KU0,5,其其他他。,

19、)(05051kkf有实根等价于有实根等价于0,即,即 16K216(K+2)0,K1,or K2故方程有实根的概率为:故方程有实根的概率为:P(K1)+P(K2)=605152.dx 区间区间(0,1)上的均匀分布上的均匀分布U(0,1)在计在计算机模拟中起着重要的作用算机模拟中起着重要的作用.实用中,用计算机程序可以在短时间实用中,用计算机程序可以在短时间内产生大量服从内产生大量服从(0,1)上均匀分布的随机上均匀分布的随机数数.它是由一种迭代过程产生的它是由一种迭代过程产生的.严格地说,计算机中产生的严格地说,计算机中产生的U(0,1)随随机数并非完全随机,但很接近随机,故常机数并非完全

20、随机,但很接近随机,故常称为称为伪随机数伪随机数.如取如取n足够大,独立产生足够大,独立产生n个个U(0,1)随机数,则从用这随机数,则从用这 n 个数字画出的频率个数字画出的频率直方图就可看出,它很接近于直方图就可看出,它很接近于(0,1)上的上的均匀分布均匀分布U(0,1).则称则称 X 服从参数为服从参数为 的指数分布的指数分布.(2)若)若 r.v X具有概率密度具有概率密度 000)(xxexfx 0常简记为常简记为 XE().指数分布指数分布分布函数为:分布函数为:.0,0,0,1)(xxexFx 指数分布常用于可靠性统计研究指数分布常用于可靠性统计研究中,如元件的寿命中,如元件的寿命.1)(00 xxedxedxxf f(x)0,满足概率密度性质。满足概率密度性质。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第三章2随机变量的分布函数课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|