第5章-钢中马氏体相变(3学时)讲解课件.ppt

上传人(卖家):晟晟文业 文档编号:4608920 上传时间:2022-12-24 格式:PPT 页数:44 大小:2.27MB
下载 相关 举报
第5章-钢中马氏体相变(3学时)讲解课件.ppt_第1页
第1页 / 共44页
第5章-钢中马氏体相变(3学时)讲解课件.ppt_第2页
第2页 / 共44页
第5章-钢中马氏体相变(3学时)讲解课件.ppt_第3页
第3页 / 共44页
第5章-钢中马氏体相变(3学时)讲解课件.ppt_第4页
第4页 / 共44页
第5章-钢中马氏体相变(3学时)讲解课件.ppt_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、UJSDai QX第第5 5章章 钢中马氏体相变钢中马氏体相变研研究究方方法法 唯象法唯象法是马氏体相变的唯象理论,可用矩阵是马氏体相变的唯象理论,可用矩阵等数学方法来描述切变过程及晶体学关系等等数学方法来描述切变过程及晶体学关系等 能量法能量法是从能量角度来分析研究马氏体相变是从能量角度来分析研究马氏体相变的形核和长大过程及形貌变化规律的形核和长大过程及形貌变化规律 结构法结构法是用各种显微分析手段来分析研究马是用各种显微分析手段来分析研究马氏体相变的晶体结构和性能变化规律氏体相变的晶体结构和性能变化规律 本章主要从能量角度来讨论马氏体相变的热力学、本章主要从能量角度来讨论马氏体相变的热力学

2、、动力学和形态学的规律动力学和形态学的规律.UJSDai QX6.1 几个基本概念几个基本概念1 1 位移式转变位移式转变 结构结构转变转变位移式转变位移式转变重建式转变重建式转变 位移式转变是位移式转变是一种通过原子的一种通过原子的协调移动来进行协调移动来进行的固态相变的固态相变相相变变特特点点 不需要破坏化学键,相变位垒低不需要破坏化学键,相变位垒低,相变速度快。相变速度快。协调移动有两种方式:均匀点阵形变协调移动有两种方式:均匀点阵形变(畸变)和原子改组(畸变)和原子改组(shuffle)UJSDai QX2 2 均匀点阵畸变均匀点阵畸变 定定义义 均匀点阵畸变是将一种点阵转变为另一种均

3、匀点阵畸变是将一种点阵转变为另一种点阵的均匀应变,也简称均匀切变点阵的均匀应变,也简称均匀切变特特点点 均匀点阵形变会改变结构,产生体积变化均匀点阵形变会改变结构,产生体积变化和形状变化,可引起高的应变能和形状变化,可引起高的应变能.最简单的就是最简单的就是BainBain应变模型应变模型 形状变化有两个分量:切变分量和膨胀分量,形状变化有两个分量:切变分量和膨胀分量,其共同作用使相变产生了整体的宏观变形。其共同作用使相变产生了整体的宏观变形。表面浮凸现象就是由于形状变化造成的。表面浮凸现象就是由于形状变化造成的。UJSDai QX3 3 点阵不变形变点阵不变形变 原理原理 最小自由能原理最小

4、自由能原理,尽可能尽可能相变体系的能量相变体系的能量特点特点 又称不均匀切变。又称不均匀切变。M M相变在第一次切变相变在第一次切变后,后,产生滑移或孪生。滑移留下位错、产生滑移或孪生。滑移留下位错、层错,孪生形成了共格层错,孪生形成了共格孪晶孪晶界面。界面。这不改变已形成的点阵结构,也不改变体积,却改这不改变已形成的点阵结构,也不改变体积,却改变了应变能变了应变能,使体系的能量,使体系的能量。对一般马氏体相变,。对一般马氏体相变,点阵不变形变是第二次切变点阵不变形变是第二次切变UJSDai QX 图图 马氏体相变的二次切变过程马氏体相变的二次切变过程a)a)母相晶体;母相晶体;b)b)点阵切

5、变后的晶体;点阵切变后的晶体;c)c)二次滑移切变;二次滑移切变;d)d)二次孪生切变二次孪生切变 UJSDai QX4 4 原子改组原子改组 5 5 无扩散相变无扩散相变 原子改组是原子在晶胞内的协调移动,这种移动并不产原子改组是原子在晶胞内的协调移动,这种移动并不产生均匀点阵形变的应变。如在生均匀点阵形变的应变。如在Ti合金中的合金中的相变相变,某些某些原子靠近一点,另一些原子相对远离一点,交替进行。原子靠近一点,另一些原子相对远离一点,交替进行。没有总的形状变化,没有总的形状变化,应变能不重要,界面能稍有变化应变能不重要,界面能稍有变化 原子不发生随机迁移扩散的相变称为无扩散相变。当然原

6、子不发生随机迁移扩散的相变称为无扩散相变。当然肯定也是位移式的。无扩散相变重要的结果是使新、旧两肯定也是位移式的。无扩散相变重要的结果是使新、旧两相具有完全相同的成分,并且组织缺陷也遗传。所以从热相具有完全相同的成分,并且组织缺陷也遗传。所以从热力学观点看,无扩散相变可当作单组元系统来处理。力学观点看,无扩散相变可当作单组元系统来处理。UJSDai QX图图 Ti合金中的合金中的相变相变 (原子改组原子改组)图图 SrTiO3分子结构的旋转相变分子结构的旋转相变 氧原子氧原子,Sr原子原子,顶角为顶角为Ti原子原子UJSDai QX6 6、马氏体相变、马氏体相变定定义义 M柯亨定义:柯亨定义:

7、M M相变是实质上没有扩散的点阵畸相变是实质上没有扩散的点阵畸变式的组织转变,它的切变分量和最终形态变化应变式的组织转变,它的切变分量和最终形态变化应足以使转变过程中动力学及形态足以使转变过程中动力学及形态受应变能控制受应变能控制 位移式、无扩散是两个主要特征。位移式、无扩散是两个主要特征。特特点点 需要形核和过冷;需要形核和过冷;形成一个不变平面界面。界面移动速率极快,形成一个不变平面界面。界面移动速率极快,界面前有许多位错,应变能是很重要的;界面前有许多位错,应变能是很重要的;新、旧相结构之间具有明显的晶体学关系。新、旧相结构之间具有明显的晶体学关系。当然这不是根本特征,其它许多相变也都有

8、当然这不是根本特征,其它许多相变也都有.UJSDai QX7 7、准马氏体相变、准马氏体相变 准准M相变(相变(Quasimartensitic Transformation)和)和M相相变一样,也是以切变形变为主,但其切变量不大,因此变一样,也是以切变形变为主,但其切变量不大,因此它的动力学和形态它的动力学和形态基本上不受应变能所控制基本上不受应变能所控制。这种转变也是位移式无扩散相变,位移也是以切变为这种转变也是位移式无扩散相变,位移也是以切变为主的。和主的。和M相变的根本区别是轴比相变的根本区别是轴比c/a是连续变化的,即是连续变化的,即意味着正方结构是从母相连续形成的,不需要形核。意味

9、着正方结构是从母相连续形成的,不需要形核。例如:超导化合物例如:超导化合物V3Si 的转变特征。的转变特征。V3Si从高温冷却从高温冷却到很低温度时,具有立方结构、点阵常数为到很低温度时,具有立方结构、点阵常数为a的母相会转的母相会转变为正方结构相。如图变为正方结构相。如图6.4所示,转变临界温度为所示,转变临界温度为Tm,正方结构的正方结构的c 增长,而增长,而a 则减小。则减小。UJSDai QXUJSDai QX6.2 6.2 马氏体相变形核马氏体相变形核1 1 均匀形核均匀形核 分析讨论相变晶核的临界尺寸,一般有两种方法:分析讨论相变晶核的临界尺寸,一般有两种方法:经典均匀经典均匀形核

10、方法形核方法设设 G=GV+GE+GS 求求G*相变变温相变变温长大理论长大理论 认为体系到达相变临界温度认为体系到达相变临界温度MS时时,体系体系中已存在许多可供相变长大的晶核中已存在许多可供相变长大的晶核,这时在这时在理论上相变驱动力和相变阻力是相等的理论上相变驱动力和相变阻力是相等的.MS 应满足应满足GV+GE+GS=0 G*两种方法得到的临界晶核尺寸大小是有一定差别的两种方法得到的临界晶核尺寸大小是有一定差别的UJSDai QX形成这片马氏体时,总的自由能变化为:形成这片马氏体时,总的自由能变化为:G随随r、c变化的曲线很复杂,呈马鞍面形状,是双曲抛物变化的曲线很复杂,呈马鞍面形状,

11、是双曲抛物面。分别求其偏导数,可求得面。分别求其偏导数,可求得G*,即:,即:22223434rrcAcrGcrGVVGc224VGAr432332VGAG经典的均匀形核理论经典的均匀形核理论:设马氏体核心呈扁球形,设马氏体核心呈扁球形,c/r 1,如图,如图6.6。UJSDai QX2 2 非均匀形核非均匀形核位错形核位错形核:位错运动产生马氏体核心位错运动产生马氏体核心;界面位错阵列形核界面位错阵列形核;位错应变能协助转变位错应变能协助转变 层错形核层错形核:位错理论假定位错理论假定,位错可分解为两组不全位错,位错可分解为两组不全位错,当两组不全位错分离时,它们之间的结构将发生变当两组不全

12、位错分离时,它们之间的结构将发生变 化。若母相为面心立方结构时,层错区域为化。若母相为面心立方结构时,层错区域为hcp。层错区域形成的就是层错区域形成的就是hcp马氏体的核心。马氏体的核心。Olson和和Cohen详细定量地计算了这些位错的运动详细定量地计算了这些位错的运动.UJSDai QX 面心立方结构的密排面是面心立方结构的密排面是111面,不全位错在密排面面,不全位错在密排面上运动,根据上运动,根据Cohen和和Olson理论理论,可有三种情况:可有三种情况:(1)位错原堆垛在每层)位错原堆垛在每层111面上,面上,则不全位错在每一层则不全位错在每一层111面上运动面上运动(2)若每隔

13、一层)若每隔一层111面上存在位错面上存在位错堆垛,并分解为不全位错堆垛,并分解为不全位错(3)若不全位错在每隔两层)若不全位错在每隔两层111面面上运动,上运动,层错区域层错区域成为孪晶成为孪晶hcp结构结构马氏体马氏体bcc结构结构马氏体马氏体UJSDai QX5.2 马氏体相变形态学马氏体相变形态学1 应变能和界面能的估算应变能和界面能的估算 过程都是遵循沿着阻力最小的途径进行的。过程都是遵循沿着阻力最小的途径进行的。当当T一定时,一定时,GV 是一定值是一定值.应变能应变能GE+界面能界面能GS 最小最小.在钢中在钢中,经计算经计算GS =14.18 J/mol,GE为为 580 J/

14、mol,GV 大约在大约在 -1213 J/mol 界面能界面能GS远小于远小于 GEUJSDai QX2 能量和形貌的关系能量和形貌的关系ArcrrAccrrgN2222342342rAcccrgGNN233/42 设马氏体为扁球形,半径为设马氏体为扁球形,半径为r,厚度为,厚度为c,则其体积和表,则其体积和表面积可求得面积可求得。采用变温长大理论。采用变温长大理论,所以,该马氏体片的非化所以,该马氏体片的非化学自由能变化为:学自由能变化为:那么,单位体积马氏体的非化学自由能变化为:那么,单位体积马氏体的非化学自由能变化为:(6.10)A A为切变应变能因子为切变应变能因子,是形变的切变分量

15、,是形变的切变分量,n n是形变的膨胀分量。是形变的膨胀分量。)(22nAUJSDai QX r、c 称称为为形状参数形状参数,、A为为能量参数能量参数。当。当M的体积不变的体积不变时,可求得满足为最小值的关系。借助于偏微分有:时,可求得满足为最小值的关系。借助于偏微分有:0dV234crV0NGd0)2(342dcrrcdrdccVdrrVdVrcdccrdr2dccGdrrGdGrNcNN02322 dcrAcdrrAc(6.12)(6.13)UJSDai QX023222dcrAcdccrrAc02322rAcrAArc2将式将式(6.12)代入式代入式(6.13),则得:,则得:(6.

16、15)将式将式(6.15)代入式代入式(6.10),则可得,则可得min)(NGUJSDai QXcrAccrrrcrAcrGN2525223223)(2min分析讨论:分析讨论:(1)从式()从式(6.15)知:)知:越小或越小或A越大,则越大,则c2/r 越小,易越小,易形成扁的透镜状马氏体,趋近于薄圆盘状。即形成扁的透镜状马氏体,趋近于薄圆盘状。即对于不同成分对于不同成分的合金,由于的合金,由于或或A不同,得到的透镜状马氏体的长、短轴不同,得到的透镜状马氏体的长、短轴之比是不同的;之比是不同的;(2)从)从(6.16)知:当知:当A一定时,一定时,c/r 值越小,则值越小,则(GN)mi

17、n越小,扁的透镜状马氏体易形成。当然有一定限度越小,扁的透镜状马氏体易形成。当然有一定限度,c 0。即。即对一定成分的合金,形成的马氏体尽可能地取扁的透镜状;对一定成分的合金,形成的马氏体尽可能地取扁的透镜状;(6.16)UJSDai QX (3)对于给定的)对于给定的(GN)min,一定有一个最适合的,一定有一个最适合的c/r值。值。在一定条件下,形成的马氏体也有一定的在一定条件下,形成的马氏体也有一定的c/r值值;(4)GN 是由是由GV 来平衡的,即相变阻力是由化学自来平衡的,即相变阻力是由化学自由能来克服的。由能来克服的。GV 的绝对值大,的绝对值大,A基本不变时,基本不变时,c/r

18、也也大。大。不同成分的合金因为不同成分的合金因为GV 不同,所以形成的马氏体形不同,所以形成的马氏体形貌也不同貌也不同。显然,。显然,GV 较小时,易形成板条状;较小时,易形成板条状;GV 较较大时,易形成透镜状。大时,易形成透镜状。定量地说,定量地说,1256 J/mol时,易形成透镜状。如在含时,易形成透镜状。如在含0.4%1.2%C的钢中,由于高碳合金钢的的钢中,由于高碳合金钢的GV 较大,所以较大,所以形成了以透镜状为主的马氏体;形成了以透镜状为主的马氏体;UJSDai QX(5)求)求C*和和 r*VGNGVGNG当当 时,马氏体核心长大。其临界状态时,马氏体核心长大。其临界状态为为

19、 =对应的温度就是对应的温度就是Ms。阻力应等于驱。阻力应等于驱动力动力,将式(将式(6.15)代入式()代入式(6.16)可得:)可得:VNGrAG2/1min252225VGArVGc25AGrcV52马氏体形状处决于化学自马氏体形状处决于化学自由能和应变能量参数由能和应变能量参数A AUJSDai QX5.3 -马氏体相变马氏体相变1 1、层错能概念、层错能概念 层错能层错能:由测量层错宽度,根据位错理论推导的公式计算的由测量层错宽度,根据位错理论推导的公式计算的 能量值为层错能能量值为层错能.表示为表示为SF 或或SEF.层错形核能层错形核能:层错的存在使体系能量的变化值,层错的存在使

20、体系能量的变化值,GSFE 合金元素对层错能的贡献合金元素对层错能的贡献n1iii0SF300SFMa 有些合金元素的作用于并非是线性的,合金元素间还有有些合金元素的作用于并非是线性的,合金元素间还有交互作用。交互作用。0 是虚拟的纯是虚拟的纯-Fe 在室温时的层错能在室温时的层错能.UJSDai QX 对于奥氏体对于奥氏体,根据合金元素的性质和各研究者的试验结根据合金元素的性质和各研究者的试验结果,经计算机处理得到:果,经计算机处理得到:300SF0SF (MJ/m2)=+1.59Ni 1.34Mn+0.06Mn2 1.75Cr+0.01Cr2+15.21Mo5.59Si 60.69(C+1

21、.2N)2 +26.27(C+1.2N)(Cr+Mn+Mo)1/2+0.61Ni(Cr+Mn)1/2 合金元素对层错能的作用是较复杂的。除合金元素本身合金元素对层错能的作用是较复杂的。除合金元素本身的作用规律外,还有合金元素间的交互作用,并且这种交互的作用规律外,还有合金元素间的交互作用,并且这种交互作用的影响是较大的,不可忽略。主要有作用的影响是较大的,不可忽略。主要有Cr、Mn等碳化物等碳化物形成元素和形成元素和C、N间的交互作用,间的交互作用,Ni和和Cr、Mn间的交互作用。间的交互作用。合金元素的交互作用往往提高了合金元素的交互作用往往提高了层错能层错能,这可解释以前文献这可解释以前文

22、献研究结果的矛盾研究结果的矛盾.UJSDai QX 图图 SF计算值和实验值计算值和实验值UJSDai QX(a)(C+1.2N)对对SF的影响的影响 (b)Cr对对SF的影响的影响UJSDai QX(a)Mn对对SF的影响的影响 (b)Ni对对SF的影响的影响UJSDai QX N和和C(均为均为0.4wt%)在不同温度下对在不同温度下对18Cr16Ni10Mn钢层错能的影响钢层错能的影响 N对对18Cr16Ni10Mn钢层错能的影响钢层错能的影响UJSDai QX2 2、-马氏体形貌特征马氏体形貌特征 -M是重要相变类型之一。是重要相变类型之一。-M分布有严格的取向,惯习面分布有严格的取向

23、,惯习面是(是(111)。狭长的)。狭长的-M片可贯穿整个奥氏体晶粒,不穿过晶片可贯穿整个奥氏体晶粒,不穿过晶界,但可以在晶界另一侧的晶粒中诱发出新的界,但可以在晶界另一侧的晶粒中诱发出新的片。片。之间可之间可以交叉,穿过。以交叉,穿过。片不穿过孪晶界。片不穿过孪晶界。相金相组织特征可分为相金相组织特征可分为五种形态五种形态 A)简单交叉成一定的简单交叉成一定的角度的字形角度的字形分布;分布;B)网格状的网格状的分布;分布;C)平行的平行的线条;线条;D)区域内接近正交的区域内接近正交的分布;分布;E)和和F)两侧成对称分两侧成对称分布的羽毛状分布。布的羽毛状分布。UJSDai QX-马氏体形

24、貌金相特征马氏体形貌金相特征UJSDai QX拉伸形变的拉伸形变的-马氏体形貌特征马氏体形貌特征UJSDai QX 冲击断裂后断口形貌特征冲击断裂后断口形貌特征UJSDai QX 冲击断裂后断口形貌微观特征冲击断裂后断口形貌微观特征UJSDai QX3 3、奥氏体层错能与马氏体相变奥氏体层错能与马氏体相变A在低温下可能发生在低温下可能发生、相变相变 层错对这些层错对这些M相变类型、相变类型、相变临界点、相变临界点、N形态及亚结形态及亚结构都有一定的影响,甚至会构都有一定的影响,甚至会改变相变机制改变相变机制 Cohen、Olsen提出了在某些钢中马氏体相变的层错形核提出了在某些钢中马氏体相变的

25、层错形核机制。把层错区当作马氏体相变的晶胚。机制。把层错区当作马氏体相变的晶胚。Sato等研究等研究Fe-18Cr-14Ni不锈钢,建立了化学自由能和层不锈钢,建立了化学自由能和层错能间的微分关系式,但未能揭示出直接联系。错能间的微分关系式,但未能揭示出直接联系。徐祖耀从热力学证明了低层错能材料的层错形核机制,认徐祖耀从热力学证明了低层错能材料的层错形核机制,认为相变驱动力与层错能有关。为相变驱动力与层错能有关。Breedis等认为相变驱动力随层错能的增加而单调增加。等认为相变驱动力随层错能的增加而单调增加。我们在热力学上从层错能及相变临界温度的相对变化角我们在热力学上从层错能及相变临界温度的

26、相对变化角度讨论低温奥氏体钢的各类马氏体相变。度讨论低温奥氏体钢的各类马氏体相变。UJSDai QX 根据变温长大理论,相变阻力主要为应变能根据变温长大理论,相变阻力主要为应变能GE和界和界面能面能GS,根据最小阻力原理,根据最小阻力原理,(GE+GS)应为最小应为最小 根据位错理论,根据位错理论,(GN)min就是习惯上从研究者测定层错就是习惯上从研究者测定层错宽度所得到的层错能宽度所得到的层错能 .UJSDai QX为量纲统一,可表示为:为量纲统一,可表示为:d83nc34cr34rn)G(SFSF22SFminN 式中,式中,d为层错所在滑移面的面间距,为层错所在滑移面的面间距,n为相变

27、核心中的为相变核心中的层错密排面层数。因为层错密排面层数。因为hcp马氏体是每隔一层密排面为一层马氏体是每隔一层密排面为一层错,所以厚度错,所以厚度c=2nd,在奥氏体中已存在尺寸大小不同的层,在奥氏体中已存在尺寸大小不同的层错,这些层错能否自动扩展,则取决于能量条件。当化学自错,这些层错能否自动扩展,则取决于能量条件。当化学自由能由能Gc 超过相变阻力超过相变阻力GN时,层错核心才会自动扩展,因时,层错核心才会自动扩展,因为为Gc 为负值,所以有:为负值,所以有:d83GSFCUJSDai QX 上式即表示了相变驱动力和层错能间直接关系。上式即表示了相变驱动力和层错能间直接关系。显然显然,层

28、错能提高,层错扩展所需的化学自由能驱动力也层错能提高,层错扩展所需的化学自由能驱动力也会线性地增大,和会线性地增大,和Breedis、Kaufman的结论一致,和的结论一致,和Sato的的关系式相似。根据有关数据关系式相似。根据有关数据,经计算得经计算得 SFSF87c02.1310073.2102.783G 经计算,不全位错扩展时的晶格阻力经计算,不全位错扩展时的晶格阻力Gf 的估算值为:的估算值为:mol/J81.48dbnG0f该值和该值和Olsen,Cohen推算的应变能推算的应变能41J/mol甚为接近甚为接近.UJSDai QX所以前式可表示为:所以前式可表示为:fSFCGd83G

29、 上式和徐祖耀提出的上式和徐祖耀提出的 GC=AEF+B 关系式是一致的关系式是一致的.B值值的物理意义接近相变应变能,和用奥氏体剪切强度来衡量的的物理意义接近相变应变能,和用奥氏体剪切强度来衡量的晶格摩擦阻力也是相近的。晶格摩擦阻力也是相近的。经过计算,经过计算,EF 150 mJ/m2时,面心晶体中不存在层错。时,面心晶体中不存在层错。例如例如Al的的EF 约约200 mJ/m2,一般是看不到层错的;而,一般是看不到层错的;而Cu合合金的金的EF 只有约只有约20 mJ/m2,较易形成层错。,较易形成层错。UJSDai QX4 4、奥氏体相变结构参数奥氏体相变结构参数S S 如果相变驱动力

30、全部提供相变临界分切应力,则根据如果相变驱动力全部提供相变临界分切应力,则根据FriedelFriedel表达式有:表达式有:GbdC式中,式中,d 是滑移面面间距,是滑移面面间距,b 为柏氏矢量。为柏氏矢量。量纲为量纲为MPa;G 量纲为量纲为J/cm3。根据得到的关系式,相变临界分切应力和层错能关系为:根据得到的关系式,相变临界分切应力和层错能关系为:f7SFCG10b83UJSDai QX如果认为如果认为Gf 对应于奥氏体屈服强度,所以可写成:对应于奥氏体屈服强度,所以可写成:MsB10b832.07SFC 、马氏体相变的临界分切应力马氏体相变的临界分切应力c 是不同的,随温度下是不同的

31、,随温度下降而变化的规律也不同,因而有着不同的影响系数。所以上降而变化的规律也不同,因而有着不同的影响系数。所以上式的一般表达式为:式的一般表达式为:S2.0SFiCMBibAi 奥氏体中各种不同的马氏体相变,主要与各自的相对临界奥氏体中各种不同的马氏体相变,主要与各自的相对临界切应力大小有关。相变总是沿着相变阻力为最小的形状和途径切应力大小有关。相变总是沿着相变阻力为最小的形状和途径进行的。进行的。UJSDai QX 相变临界分切应力的相对变化相变临界分切应力的相对变化 相变临界点的相对变化相变临界点的相对变化 UJSDai QX图图 Fe-Mn合金合金(左左)和和Cr-Ni钢钢(右右)随温

32、度变化的相变规律随温度变化的相变规律UJSDai QX 相变临界切应力越大,相变驱动力也就应越大,基本上相变临界切应力越大,相变驱动力也就应越大,基本上呈线性关系呈线性关系.为简化,将为简化,将 记为记为 Ms2.02.0 由于层错能和强度随温度而变化由于层错能和强度随温度而变化,特别是强度特别是强度,所以所以相变相变临界切应力也会变化临界切应力也会变化.在不同合金化的钢中,合金元素的加在不同合金化的钢中,合金元素的加入对强度和层错能的作用程度是不同的入对强度和层错能的作用程度是不同的.合金元素对强度和合金元素对强度和层错能的综合作用才决定了马氏体相变的特性层错能的综合作用才决定了马氏体相变的

33、特性.如果以如果以 除前式则得到:除前式则得到:2.0BibAi2.0SF2.0iC 式中,式中,是无量纲参数。决定马氏体相变临界是无量纲参数。决定马氏体相变临界切应力的因素主要是其比值,定义为奥氏体相变结构参数,切应力的因素主要是其比值,定义为奥氏体相变结构参数,以以S表示。表示。)b(2.0SFUJSDai QX研究结果研究结果:当当S 0.65,将可能产生,将可能产生马氏体相变;马氏体相变;S 0.4,将可能产生,将可能产生马氏体相变;马氏体相变;S 在在0.65 0.35时,则可能产生时,则可能产生+相变。相变。当当MS 和和 MS 均小于均小于4K时,其时,其S 值一般都很低,不会发值一般都很低,不会发生马氏体相变。生马氏体相变。UJSDai QX图图 S及及MS 对马氏体相变的影响对马氏体相变的影响 (C+N)0.1%.-,-,-+-+,-,#-(MS 4K)图图 SFSF及及MS 对马氏体相变的影响对马氏体相变的影响 (C+N)0.1%.-,-+-+,-,#-(MS 4K)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第5章-钢中马氏体相变(3学时)讲解课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|