北师大版必修2数学课件:§5.2第2课时平面与平面平行的性质.ppt

上传人(卖家):金钥匙文档 文档编号:463840 上传时间:2020-04-13 格式:PPT 页数:22 大小:623KB
下载 相关 举报
北师大版必修2数学课件:§5.2第2课时平面与平面平行的性质.ppt_第1页
第1页 / 共22页
北师大版必修2数学课件:§5.2第2课时平面与平面平行的性质.ppt_第2页
第2页 / 共22页
北师大版必修2数学课件:§5.2第2课时平面与平面平行的性质.ppt_第3页
第3页 / 共22页
北师大版必修2数学课件:§5.2第2课时平面与平面平行的性质.ppt_第4页
第4页 / 共22页
北师大版必修2数学课件:§5.2第2课时平面与平面平行的性质.ppt_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、第2课时 平面与平面平行的性质 回想一下,平面与平面平行的判定定理是什么?回想一下,平面与平面平行的判定定理是什么? 如果一个平面内有两条相交直线都平行于另一个平面,如果一个平面内有两条相交直线都平行于另一个平面, 那么这两个平面平行那么这两个平面平行 平面与平面平行的判定定理解决了平面与平面平平面与平面平行的判定定理解决了平面与平面平 行的条件问题,反之,在平面与平面平行的前提下,行的条件问题,反之,在平面与平面平行的前提下, 可以得到什么结论呢?请进入本节课的学习!可以得到什么结论呢?请进入本节课的学习! 1.1.掌握平面与平面平行的性质,并会应用性质解掌握平面与平面平行的性质,并会应用性

2、质解 决问题决问题. .(重点)(重点) 2.2.能运用平面与平面平行的性质定理证明一些空能运用平面与平面平行的性质定理证明一些空 间平行关系的简单问题间平行关系的简单问题. .(难点)(难点) 探究探究1:1:如果两个平面平行,那么一个平面内的直线如果两个平面平行,那么一个平面内的直线 与另一个平面有什么位置关系与另一个平面有什么位置关系? a 提示:提示:如果两个平面平行,那么一个平面内的如果两个平面平行,那么一个平面内的 直线与另一个平面平行直线与另一个平面平行. . 直线与平直线与平 面没有公面没有公 共点共点 探究探究2:2:如果两个平面平行,两个平面内的直线有如果两个平面平行,两个

3、平面内的直线有 什么位置关系什么位置关系? 提示提示: :如果两个平面平行,那如果两个平面平行,那 么两个平面内的直线是异面么两个平面内的直线是异面 直线直线, ,或者是平行直线或者是平行直线. . 探究探究3:3:若若 ,平面,平面 , 分别与平面分别与平面 相交于直相交于直 线线a a,b b,那么直线,那么直线a a,b b的位置关系如何?为什么?的位置关系如何?为什么? a b 平行平行. . 由于两条交线由于两条交线a,ba,b分别分别 在两个平行平面在两个平行平面, 内,所以内,所以a a与与b b不相交不相交. . 又因为又因为a,ba,b都在同一平都在同一平 面面 内,由平行线

4、的定内,由平行线的定 义可知义可知ab.ab. 在平面与平面平行的条件下可以得到什么结论?在平面与平面平行的条件下可以得到什么结论? 用文字语言用文字语言和符号语言和符号语言表述表述. . a b 定理定理5.4 5.4 如果两个平行平面同时与第三个平如果两个平行平面同时与第三个平 面相交,那么它们的交线平行面相交,那么它们的交线平行. . /,/abab 想一想想一想: :平面与平面平行的性质定理可简述为“面面平平面与平面平行的性质定理可简述为“面面平 行,则线线平行”,在实际应用中它有何功能作用?行,则线线平行”,在实际应用中它有何功能作用? a b 作用作用: :由平面与平面平行得出直线

5、与直线平行由平面与平面平行得出直线与直线平行. . 直线与直线平行直线与直线平行 平面与平面平行平面与平面平行 面面平行的面面平行的 判定定理判定定理 面面平行的面面平行的 性质定理性质定理 例例1.1. 求证求证: :夹在两个平行平面间的平行线段相等夹在两个平行平面间的平行线段相等. . 如图如图, , / ,AB/CD,AB/CD,且且A A , , C C ,B,B ,D,D . . 求证求证:AB=CD.:AB=CD. 证明证明 因为因为AB/CD,AB/CD,所以过所以过AB,CDAB,CD可可 作平面作平面,且平面且平面与平面与平面和和 分别相交于分别相交于ACAC和和BD.BD.

6、 因为因为/,所以所以AC/BD. AC/BD. 因此因此, ,四边形四边形ABDCABDC是平是平 行四边形行四边形. .所以所以AB=CD.AB=CD. 提示:提示: 1.1.若两个平面互相平行,则其中一个平面中的直若两个平面互相平行,则其中一个平面中的直 线必平行于另一个平面;线必平行于另一个平面; 2.2.平行于同一平面的两平面平行;平行于同一平面的两平面平行; 3.3.夹在两平行平面间的平行线段相等夹在两平行平面间的平行线段相等. . 想一想:想一想:由两个平面平行可以得到哪些结论呢?由两个平面平行可以得到哪些结论呢? 例例2 2 如图,平面如图,平面 , , 两两平行,且直线两两平

7、行,且直线l 与与 , , 分别相交于点分别相交于点A,B,C,A,B,C,直线直线m m与与 , , 分别相交于点分别相交于点D,E,F,AB=6,BC=2,EF=3.D,E,F,AB=6,BC=2,EF=3.求求DEDE的长的长. . B E 解解 当直线当直线m m与与l共面时,该平面与共面时,该平面与,分别分别 交于直线交于直线AD,BE,CF,AD,BE,CF,因为因为,两两平行,所两两平行,所 以以ADADBEBECF,CF,故故 ABDE . BCEF = 当直线当直线m m与与l不共面时,连接不共面时,连接DC.DC. 设设DCDC与与相交于点相交于点G,G,则平面则平面ACD

8、ACD与与,分别相交于分别相交于 直线直线AD,BG,AD,BG,平面平面DCFDCF与与,分别相交于直线分别相交于直线GE,CF.GE,CF. 因为因为,两两平行,所以两两平行,所以BGAD,GECF.BGAD,GECF. 因此因此 ABDG DGDE . BCGC GCEF =, 所以所以 又因为又因为AB=6,BC=2,EF=3,AB=6,BC=2,EF=3,所以所以,DE=9.,DE=9. ABDE . BCEF = 1.1.已知直线已知直线a a ,给出以下三个叙述:,给出以下三个叙述: 若平面若平面 平面平面 ,则直线,则直线aa平面平面 ; 若直线若直线aa平面平面 ,则平面,则

9、平面 平面平面 ; 若直线若直线a a不平行于平面不平行于平面 ,则平面,则平面 不平行于平不平行于平 面面 其中正确的是(其中正确的是( ) A.A. B.B. C. C. D.D. D D 解:解:若平面若平面平面平面,则直线,则直线aa平面平面;因;因 为直线为直线a a,平面,平面平面平面,则,则内的每一条内的每一条 直线都平行平面直线都平行平面显然正确显然正确 若直线若直线aa平面平面,则平面,则平面平面平面;因为当平;因为当平 面面与平面与平面相交的时候,仍然可以存在直线相交的时候,仍然可以存在直线a a 使直线使直线aa平面平面.故错误故错误 若直线若直线a a不平行于平面不平行

10、于平面,则平面,则平面不平行于平不平行于平 面面;平面内有一条直线不平行于另一个平面,两;平面内有一条直线不平行于另一个平面,两 平面就不会平行故显然正确平面就不会平行故显然正确 2.2.若平面若平面 平面平面 ,直线,直线aa ,点,点BB ,则在,则在 内过点内过点B B的所有直线中的所有直线中( )( ) A.A.不一定存在与不一定存在与a a平行的直线平行的直线 B.B.只有两条与只有两条与a a平行的直线平行的直线 C.C.存在无数条与存在无数条与a a平行的直线平行的直线 D.D.存在唯一一条与存在唯一一条与a a平行的直线平行的直线 提示:提示:若若a a在在内且内且B B在在a

11、 a上,则不存在直线与上,则不存在直线与a a平行平行. . A A 3.3.已知平面已知平面 平面平面 ,若两条直线,若两条直线m,nm,n分别在平分别在平 面面 , 内,则直线内,则直线m,nm,n的关系不可能是的关系不可能是_._. 【解析解析】若两条直线相交,则平面若两条直线相交,则平面与平面与平面有公有公 共点,与共点,与矛盾,故两条直线不可能相交矛盾,故两条直线不可能相交. . 相交相交 4.4.过正方体过正方体ABCDABCD- -A A1 1B B1 1C C1 1D D1 1的三顶点的三顶点A A1 1,C C1 1,B B的平面的平面 与底面与底面ABCDABCD所在平面的

12、交线为所在平面的交线为l,则,则l与与A A1 1C C1 1的位置关的位置关 系是系是_._. 【解析解析】因为平面因为平面ABCDABCD平面平面A A1 1B B1 1C C1 1D D1 1, 平面平面ABCDABCD平面平面A A1 1C C1 1B Bl, 平面平面A A1 1B B1 1C C1 1D D1 1平面平面A A1 1C C1 1B BA A1 1C C1 1,所以,所以lAA1 1C C1 1. . 平行平行 5.5.在正方体在正方体ABCDABCD- -ABCDABCD中,点中,点M M在在CDCD上,试上,试 判断直线判断直线BMBM与平面与平面ABDABD的位

13、置关系,并说明理由的位置关系,并说明理由. . 【解析解析】直线直线BM/BM/平面平面ABD.ABD.理由:理由: 连接连接BC, BDBC, BD因为因为BD/BD, BC/AD, BD/BD, BC/AD, 又又BDBD与与BCBC交于交于BB, BDBD与与ADAD交于交于D, D, 所以,平面所以,平面ABD/ABD/平面平面BDC.BDC. BMBM在平面在平面BDCBDC内,内, 所以所以BM/BM/平面平面ABD. ABD. A B C D A B C D M 6.6. 如图,几何体如图,几何体E E- -ABCDABCD是四棱锥,是四棱锥,ABDABD为正三角为正三角 形,形

14、,CB=CDCB=CD,ECECBD.BD.若若BCD=120BCD=120,M M为线段为线段AEAE的的 中点,求证:中点,求证:DMDM平面平面BEC.BEC. M M 【证明】【证明】取取ABAB中点为中点为N N,连接,连接MN,DNMN,DN, 因为因为M M是是AEAE的中点,的中点,所以所以MNMNBE.BE. 因为因为ABDABD是等边三角形,是等边三角形, 所以所以DNDNAB.AB. 由由C CB=CD,B=CD,BCDBCD120120知,知,CBDCBD3030, 所以所以ABCABC6060+30+309090,即,即BCBCABAB, 所以所以NDNDBCBC,又因为,又因为MNMNDN=NDN=N,BEBEBC=BBC=B, 所以平面所以平面MNDMND平面平面BECBEC, 故故DMDM平面平面BEC.BEC. 如果一个平面内有两条相交直线都平行于另一如果一个平面内有两条相交直线都平行于另一 个平面,那么这两个平面平行个平面,那么这两个平面平行. . 线线平行线线平行 面面平行面面平行 面面平行面面平行 线线平行线线平行 面面平行的面面平行的判定定理判定定理 面面平行的性质定理面面平行的性质定理 如果两个平行平面同时与第三个平面相交,那如果两个平行平面同时与第三个平面相交,那 么它们的交线平行么它们的交线平行. .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 数学 > 北师大版 > 必修2
版权提示 | 免责声明

1,本文(北师大版必修2数学课件:§5.2第2课时平面与平面平行的性质.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|