1、2021-2022学年北京市朝阳区九年级(上)期末数学试卷一、选择题(共24分,每题3分)第1-8题均有四个选项,符合题意的选项只有一个1. 随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 如图,四边形ABCD内接于,若,则的度数为( )A. 50B. 100C. 130D. 1503. 对于二次函数的图象的特征,下列描述正确的是( )A. 开口向上B. 经过原点C.
2、对称轴是y轴D. 顶点在x轴上4. 若关于x的一元二次方程有一个根是,则a的值为( )A. B. 0C. 1D. 或15. 如图,A,B,C是正方形网格中的三个格点,则是( )A. 优弧B. 劣弧C. 半圆D. 无法判断6. 参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为( )A. B. C. D. 7. 投掷一枚质地均匀硬币m次,正面向上n次,下列表达正确的是( )A. 的值一定是B. 值一定不是C. m越大,的值越接近D. 随着m的增加,的值会在附近摆动,呈现出一定的稳定性8. 已知二次函数,当时,总有,有如下几个结论:当时,
3、;当时,c的最大值为0;当时,y可以取到的最大值为7上述结论中,所有正确结论序号是( )A. B. C. D. 二、填空题(共24分,每题3分)9. 在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是_10. 将抛物线向上平移一个单位长度,得到的抛物线的表达式为_11. 若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正_边形12. 用一个半径为2的半圆作一个圆锥的侧面,这个圆锥的底面圆的半径为_13. 某件商品的销售利润y(元)与商品销售单价x(元)之间满足,不考虑其他因素,销售一件该商品的最大利润为_元14. 如图,一个可以自由转动且质地均匀的转盘,被分成6个大小相同的扇形
4、,指针是固定的,当转盘停止时,指针指向任意一个扇形的可能性相同(指针指向两个扇形的交线时,当作指向右边的扇形)把部分扇形涂上了灰色,则指针指向灰色区域的概率为_15. 抛物线对称轴及部分图象如图所示,则关于x的一元二次方程的两根为_16. 为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为_cm三、解答题(共52分,17-22题,每题5分,第23题7分,第24题7分,第25题8分)17.
5、 解方程:18. 已知:如图,A为上的一点求作:过点A且与相切的一条直线作法:连接OA;以点A为圆心,OA长为半径画弧,与的一个交点为B,作射线OB;以点B为圆心,OA长为半径画弧,交射线OB于点P(不与点O重合);作直线PA直线PA即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接BA由作法可知点A在以OP为直径的圆上( )(填推理的依据)OA是的半径,直线PA与相切( )(填推理的依据)19. 已知关于x的一元二次方程(1)求证:方程总有两个实数根;(2)若方程的两个根都是正整数,求a的最小值20. 小明在画一个二次函数图象时,列出了下面几组y与x
6、的对应值x012y3430(1)求该二次函数的表达式;(2)该二次函数的图象与直线有两个交点A,B,若,直接写出n的取值范围21. 一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别有如下两个活动:活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为;活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为请你猜想,的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想22. 如图,在中,O为AC上一点,以点O为圆心,OC为半径的圆
7、恰好与AB相切,切点为D,与AC的另一个交点为E(1)求证:BO平分;(2)若,求BO的长23. 在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F依题意补全图形;用等式表示线段AE,AF,CE之间的数量关系,并证明24. 在平面直角坐标系xOy中,点,在抛物线上(1)若,求该抛物线的对称轴并比较,的大小;(2)已知抛物线的对称轴为,若,求t的取值范围25. 对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的
8、最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”已知点N(3,0),A(1,0),(1)在点A,B,C中,线段ON的“二分点”是_;点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围北京市朝阳区2021-2022学年九年级上学期期末考试数学试卷参考答案一、选择题(共24分,每题3分)第1-8题均有四个选项,符合题意的选项只有一个1.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是轴对称图形,不是中心对称图形,故此选项不合题意;B不是轴对称图形,是
9、中心对称图形,故此选项不符合题意;C是轴对称图形,也是中心对称图形,故此选项合题意;D不是轴对称图形,也不是中心对称图形,故此选项不合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合2. 【答案】B【解析】【分析】根据圆内接四边形的性质求出A的度数,根据圆周角定理计算即可【详解】解:四边形ABCD内接于O,A+DCB=180,DCB=130,A=50,由圆周角定理得,BOD=2A=100,故选:B【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的
10、对角互补是解题的关键3. 【答案】D【解析】【分析】根据二次函数y=a(x)2的性质判断即可【详解】二次函数y=x12中,a=10,图像开口向下,故A错误;令x=0,则y=(01)2=10,图像不经过原点,故B错误;二次函数y=x12的对称轴为直线x=1,故C错误;二次函数y=x12的顶点坐标为(1,0),顶点在x轴上,故D正确故选:D【点睛】本题考查二次函数y=a(x)2的性质,掌握二次函数相关性质是解题的关键4. 【答案】A【解析】【分析】把x=1代入方程得出(a1)x2+a2xa=0,再求出方程解即可【详解】关于x的一元二次方程(a1)x2+a2xa=0有一个根是x=1a1+a2a=0解
11、得a=1一元二次方程(a1)x2+a2xa=0a10a1a=1故选:A【点睛】此题主要考查了一元二次方程的解,注意二次项系数不能为零5. 【答案】C【解析】【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点在AC上,所以ABC为半圆,故选:C【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键6. 【答案】A【解析】【分析】设有x人参加活动,每个人与其他人握手的次数均为(x1)次,并且每个人与其他人握手均重复一次,由此列出方程即可【详解】解:设有x人参加活动,每个人
12、与其他人握手的次数均为(x1)次,并且每个人与其他人握手均重复一次,由此可得:x(x1)2=10,故选:A【点睛】题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键7. 【答案】D【解析】【分析】根据频率与概率的关系以及随机事件的定义判断即可【详解】投掷一枚质地均匀的硬币正面向上的概率是12,而投掷一枚质地均匀的硬币正面向上是随机事件,nm是它的频率,随着m的增加,nm的值会在12附近摆动,呈现出一定的稳定性;故选:D【点睛】本题考查对随机事件的理解以及频率与概率的联系与区别解题的关键是理解随机事件是都有可能发生的时间8. 【答案】B【解析】【分析】当b=c=0时,根据不等式的性质求
13、解即可证明;当a=1时,二次函数的对称轴为:x=b2,分三种情况讨论:当b21时;分别利用二次函数的的最值问题讨论证明即可得;当x=1,x=1,x=0,x=2时,分别求出相应的y的值,然后将x=2时,y的值变形为:y=4a+2b+c=3a+b+c+ab+c3c,将各个不等式代入即可得证【详解】解:当b=c=0时,y=ax2,1ax21,1x1,0x21, 1a1,即a1,正确;当a=1时,二次函数的对称轴为:x=b21=b2,当b22时,函数在x=1处取得最小值,即1b+c=1,c=2+b0,函数在x=1处取得最大值,即1+b+c=1,c=b2,二者矛盾,这种情况不存在;当1b21时,即2b2
14、时,0b24,函数在x=b2处取得最小值,即(b2)2+b(b2)+c=1,c=1+b420,c0,当b2=1时,即b=2时,y=x22x,x=1时,y=1;x=1时,y=3,不符合题意,舍去;当b2=1时,即b=2时,y=x2+2x,x=1时,y=3;x=1时,y=1,不符合题意,舍去;c1时,即b0,函数在x=1处取得最大值,即1b+c=1,c=b2,二者矛盾,这种情况不存在;综上可得:c0;故错误;当x=1时,y=ab+c,且1ab+c1;当x=1时,y=a+b+c,且1a+b+c1;当x=0时,y=c,且1c1;当x=2时,y=4a+2b+c=3a+b+c+ab+c3c,33a+b+c
15、3,1a+b+c1,33c3,74a+2b+c7,当x=2时,y可以取到的最大值为7;正确;故选:B【点睛】题目主要考查二次函数的基本性质及不等式的性质,熟练掌握不等式的性质是解题关键二、填空题(共24分,每题3分)9. 【答案】(3,2)【解析】【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案【详解】解:平面直角坐标系内两点关于原点对称横纵坐标互为相反数,点(3,2)关于原点对称的点的坐标是(3,2),故答案为(3,2)【点睛】本题主要考查了平面直角坐标系内点的坐标位置关系,难度较小10. 【答案】y=2x2+1【解析】【分析】根据“左加右减,上加下减”的平移规律
16、即可得答案【详解】抛物线y=2x2向上平移1个单位长度,抛物线平移后的表达式为y=2x2+1,故答案为:y=2x2+1【点睛】本题考查二次函数图象的平移,熟练掌握“左加右减,上加下减”的平移规律是解题关键11. 【答案】六【解析】【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数【详解】解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:半径与边长相等,这个三角形是等边三角形,正多边形的边数:360606,这个正多边形是正六边形故答案为:六【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键12. 【答案】1【解析】【分析】
17、先求出扇形的弧长,然后根据扇形的弧长等于圆锥底面圆的周长,设圆锥的底面圆的半径为r,列出方程求解即可得【详解】解:半径为2的半圆的弧长为:1222=2,围成的圆锥的底面圆的周长为2设圆锥的底面圆的半径为r,则:2r=2,解得:r=1,故答案为:1【点睛】题目主要考查圆锥与扇形之间的关系,一元一次方程的应用,熟练掌握圆锥与扇形之间的关系是解题关键13. 【答案】2【解析】【分析】y=x2+6x7=(x3)2+2知y的最大值在x=3时取得,值为2【详解】解:y=x2+6x7y=(x3)2+2根据函数图像性质可知在x=3时,y最大且取值为2故答案:2【点睛】本题考查了二次函数实际应用中的最值问题解题
18、的关键将二次函数化成顶点式14. 【答案】12#0.5【解析】【分析】指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可【详解】解:观察转盘灰色区域的面积与总面积的比值为12故答案为:12【点睛】本题考查几何概率解题的关键在于求出所求事件的面积与总面积的比值15. 【答案】x1=1,x2=3【解析】【分析】利用图象法可得x1=1,再根据抛物线的对称性求得x2=3,即可求解【详解】解:根据图象可得:抛物线与x轴的交点为(1,0)x1=1,对称轴为x=1x2=21(1)=3方程的解为x1=1,x2=3,故答案为:x1=1,x2=3【点睛】本题考查了用图象法解一元二次方程的问题,
19、掌握图象法解一元二次方程的方法、抛物线的性质是解题的关键16. 【答案】2402【解析】【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则ODMN,MD=DN,在RtODM中,OM=180cm,OD=60cm,MD=OM2OD2=1802602=1202cm,MN=2MD=2402cm,即该球在大圆内滑行的路径MN的长度为2402cm,故答案为:2402【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的
20、关键三、解答题(共52分,17-22题,每题5分,第23题7分,第24题7分,第25题8分)17.【答案】x1=52或x2=2【解析】【分析】利用十字相乘因式分解,进而即可求解【详解】2x29x+10=0,(2x5)(x2)=0,2x5=0或x2=0,解得:x1=52或x2=2【点睛】本题主要考查解一元二次方程,熟练掌握“十字相乘法”是解题的关键18. 【答案】(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理【解析】【分析】(1)根据所给的几何语言作出对应的图形即可;(2)根据圆周角定理和切线的判定定理解答即可【详解】解:(1)补全图形如图所示,直线AP即为所求作;(2)证明:连接
21、BA,由作法可知BO=BA=BP,点A在以OP为直径的圆上,OAP=90(直径所对的圆周角是直角),OA是O半径,直线PA与O相切(切线的判定定理),故答案为:直径所对的圆周角是直角,切线的判定定理【点睛】本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键19. 【答案】(1)证明见详解;(2)a的最小值为0【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根;(2)根据题意利用十字相乘法解方程,求得x1=1,x2=a+1,再根据题意两
22、个根都是正整数,从而可以确定a的取值范围,即可求出a的最小值【详解】(1)证明:依题意得:=b24ac=a+224a+1 =a2+4a+44a4 =a2,a20 ,0 方程总有两个实数根;(2)由x2a+2x+a+1=0,可化为:(x1)x(a+1)=0 得x1=1,x2=a+1 , 方程的两个实数根都是正整数,a+11 a0 a的最小值为0【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键20. 【答案】(1)y=-
23、(x+1)2+4;(2)n0,解得n4,n的取值范围为n6,解得n-5,综上n的取值范围为n-5【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质21. 【答案】P1P2,验证过程见解析【解析】【分析】首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案【详解】活动1:红球1红球2白球红球1(红1,红2)(红1,白)红球2(红2,红1)(红2,白)白球(白,红1)(白,红2)共有6种等可能的结果,摸到两个红球的有2种情况,摸出的两个球都是红球的概率记为P1=
24、26=13活动2:红球1红球2白球红球1(红1,红1)(红1,红2)(红1,白)红球2(红2,红1)(红2,红2)(红2,白)白球(白,红1)(白,红2)(白,白)共有9种等可能的结果,摸到两个红球的有4种情况,摸出的两个球都是红球的概率记为P2=49P1P2【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率=所求情况数与总情况数之比重点需要注意球放回与不放回的区别22. 【答案】(1)见解析;(2)2【解析】【分析】(1)连接OD,由O与AB相切得ODB=90,由HL定理证明RtBDORtBCO由全等三角形的性质得DBO=CBO,即可得证;(2)设O的半径为x,则OD=OE=OC=
25、x,在RtADO中,得出关系式求出x,可得出AC的长,在RtACB中,由正切值求出BC,在RtBCO中,由勾股定理求出BO即可【详解】(1)如图,连接OD,O与AB相切,ODB=90,在RtBDO与RtBCO中,DO=COBO=BO,RtBDORtBCO(HL),DBO=CBO,BO平分ABC;(2)设O的半径为x,则OD=OE=OC=x,在RtADO中,A=30,AE=1,2x=1+x,解得:x=1,AC=1+1+1=3,在RtACB中,tanA=BCAC,即BC=ACtan30=333=3,在RtBCO中,BO=CO2+BC2=12+(3)2=2【点睛】本题考查圆与直线的位置关系,全等三角
26、形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键23. 【答案】(1)120180;(2)见解析;AE=AF+CE,证明见解析【解析】【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)根据要求画出图形,即可得出结论;在AE上截取AH=AF,先证AFDAHC,再证CHE=HCE,即可得出结果【详解】(1)如图:AD只能在锐角EAF内旋转符合题意故的取值范围为:120180;(2)补全图形如下:(3)AE=AF+CE,证明:在AE上截取AH=AF,由旋转可得:AB=AD,D=ABF,ABC为等边三角形,AB=AC,BAC=ACB=60,AD=AC,DAF
27、=CAH,AFDAHC,AFD=AHC,D=ACH,AFB=CHE,AFB+ABF=ACH+HCE=60,CHE+D=D+HCE=60,CHE=HCE,CE=HE,AE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线24. 【答案】(1)对称轴为直线x=1,y2y3y1;(2)12t1【解析】【分析】(1)根据二次函数的图象与性质求解即可;(2)由题意,该抛物线过原点,分a0和a0,根据二次函数的对称性和特殊点的函数值求解即可【详解】解:(1)当a=1,b=2时,该抛物线的解析式为y=x22x=(x1)21,则该
28、抛物线的对称轴为直线x=1,点1,y1,1,y2,2,y3在抛物线上,y1=3,y2=1,y3=0,y2y3y1;(2)由题意,当x=0时,y=0,故该抛物线过原点,当a0时,抛物线的对称轴为直线x=t,t=1时,y3=0,t= 12时,y1=y3,y20y3y1,12t1;当a0时,不满足y20y3y1,故t的取值范围为12t1【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的性质是解答的关键25. 【答案】(1)B和C;3a23或a=315;(2)13r1或3r9【解析】【分析】(1)分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;对a的取值分情况讨论:0
29、a3、323和a0,根据“二分点”的定义可求解;(2)设线段AN上存在O的“二分点”为M(m,0)(1m3),对r的取值分情况讨论0r1、1r3,mr、1rr和r3,根据“二分点”的定义可求解【详解】(1)点A在ON上,故最小值为0,不符合题意,点B到ON的最小值为OB=3,最大值为BN=32+(3)2=23,点B是线段ON的“二分点”,点C到ON的最小值为1,最大值为OC=(3)2+12=2,点C是线段ON的“二分点”,故答案为:B和C;若0a3时,如图所示:点C到OD的最小值为CD=(3a)2+12,最大值为OC=2,点C为线段OD的“二分点”,2(3a)2+1=2,解得:a=3;若323
30、时,如图所示:点C到OD的最小值为1,最大值为CD=(a3)2+12,点C为线段OD的“二分点”,2=(a3)2+1,解得:a=23(舍);若a0时,如图所示:点C到OD的最小值为OC=2,最大值为CD=(3a)2+12,点C为线段OD的“二分点”,4=(3a)2+1,解得:a1=315或a2=3+15(舍),综上所得:a的取值范围为3a23或a=315;(2)如图所示,设线段AN上存在O的“二分点”为M(m,0)(1m3),当0r1时,最小值:mr,最大值为:m+r,2(mr)=m+r,即r=13m,1m3,13r113r1;当1r3,mr时,最小值为:rm,最大值为:r+m,2(rm)=r+m,即r=3m,1m3,3r9,1r3,r不存在;当1rr时,最小值为:mr,最大值为:m+r,2(mr)=m+r,即r=13m,13r1,1r3时,最小值为:rm,最大值为:m+r,2(rm)=m+r,即r=3m,3r9,r3,3r9,综上所述,r的取值范围为13r1或3r9【点睛】本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键 22 / 22