1、课前探究学习课前探究学习课堂讲练互动课堂讲练互动3.3.2 简单的线性规划问题简单的线性规划问题课前探究学习课前探究学习课堂讲练互动课堂讲练互动线性规划中的基本概念线性规划中的基本概念自学导引自学导引名称名称意义意义约束条件约束条件关于变量关于变量x,y的的_线性约束条件线性约束条件关于关于x,y的一次不等式的一次不等式(组组)目标函数目标函数欲求最大值或最小值的关于变量欲求最大值或最小值的关于变量x,y的函的函数解析式数解析式线性目标函数线性目标函数关于关于x,y的一次解析式的一次解析式可行解可行解满足满足_的的解解(x,y)可行域可行域由由所有所有_组成组成的集合的集合最优解最优解使目标函
2、数使目标函数取得取得_的的可行解可行解线性规划问题线性规划问题在在_条件条件下求线性目标函数的最大下求线性目标函数的最大值或最小值问题值或最小值问题不等式不等式(组组)线性约束条件线性约束条件可行解可行解线性约束线性约束最大值或最小值最大值或最小值课前探究学习课前探究学习课堂讲练互动课堂讲练互动 :在线性约束条件下,最优解唯一吗?:在线性约束条件下,最优解唯一吗?提示提示:最优解可能有无数多个,直线:最优解可能有无数多个,直线l0:axby0与可行与可行域中的某条边界平行时,求目标函数域中的某条边界平行时,求目标函数zaxby的最值,的最值,最优解就可能有无数多个最优解就可能有无数多个课前探究
3、学习课前探究学习课堂讲练互动课堂讲练互动解决线性规划问题的一般方法解决线性规划问题的一般方法解决线性规划问题的一般方法是图解法,其步骤如下:解决线性规划问题的一般方法是图解法,其步骤如下:(1)确定线性约束条件,注意把题中的条件准确翻译为不等确定线性约束条件,注意把题中的条件准确翻译为不等式组;式组;(2)确定线性目标函数;确定线性目标函数;(3)画出可行域,注意作图准确;画出可行域,注意作图准确;(4)利用线性目标函数利用线性目标函数(直线直线)求出最优解;求出最优解;(5)实际问题需要整数解时,应调整检验确定的最优解实际问题需要整数解时,应调整检验确定的最优解(调调整时,注意抓住整时,注意
4、抓住“整数解整数解”这一关键点这一关键点)名师点睛名师点睛1课前探究学习课前探究学习课堂讲练互动课堂讲练互动说明说明:求线性目标函数在约束条件下的最值问题的求解步求线性目标函数在约束条件下的最值问题的求解步骤是:骤是:作图作图画出约束条件画出约束条件(不等式组不等式组)所确定的平面区域和所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线目标函数所表示的平行直线系中的任意一条直线l.平移平移将直线将直线l平行移动,以确定最优解所对应的点的平行移动,以确定最优解所对应的点的位置位置求值求值解有关的方程组求出最优解的坐标,再代入目解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数
5、的最值标函数,求出目标函数的最值课前探究学习课前探究学习课堂讲练互动课堂讲练互动线性规划的应用线性规划的应用线性规划的理论和方法主要在两类问题中得到应用:一是线性规划的理论和方法主要在两类问题中得到应用:一是在人力、物力、资金等资源一定的条件下,如何利用它们在人力、物力、资金等资源一定的条件下,如何利用它们完成更多的任务;二是给定一项任务,如何合理安排和规完成更多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任划,能以最少的人力、物力、资金等资源来完成该项任务,常见的问题有:务,常见的问题有:(1)物资调运问题:物资调运问题:(2)产品安排问题;产品安
6、排问题;(3)下料问题下料问题2课前探究学习课前探究学习课堂讲练互动课堂讲练互动题型一题型一求线性目标函数的最值求线性目标函数的最值(1)求函数求函数u3xy的最大值和最小值;的最大值和最小值;(2)求函数求函数zx2y的最大值和最小值的最大值和最小值思路探索思路探索 画边界,确定可行域,根据目标直线确定最大画边界,确定可行域,根据目标直线确定最大值、最小值的位置值、最小值的位置【例例1】课前探究学习课前探究学习课堂讲练互动课堂讲练互动由由u3xy,得,得y3xu,得到斜率为,得到斜率为3,在在y轴上的截距为轴上的截距为u,随,随u变化的一组平行变化的一组平行线,线,由图可知,当直线经过可行域
7、上的由图可知,当直线经过可行域上的C点时,截距点时,截距u最大,即最大,即u最小最小图图(1)课前探究学习课前探究学习课堂讲练互动课堂讲练互动图图(2)课前探究学习课前探究学习课堂讲练互动课堂讲练互动课前探究学习课前探究学习课堂讲练互动课堂讲练互动 图解法是解决线性规划问题的有效方法其图解法是解决线性规划问题的有效方法其关键在于平移目标函数对应的直线关键在于平移目标函数对应的直线axby0,看它经,看它经过哪个点过哪个点(或哪些点或哪些点)时最先接触可行域和最后离开可行时最先接触可行域和最后离开可行域,则这样的点即为最优解,再注意到它的几何意域,则这样的点即为最优解,再注意到它的几何意义,从而
8、确定是取得最大值还是最小值义,从而确定是取得最大值还是最小值课前探究学习课前探究学习课堂讲练互动课堂讲练互动思路探索思路探索 解答本题可先将目标函数变形,找到它的几何解答本题可先将目标函数变形,找到它的几何意义,再利用解析几何知识求最值意义,再利用解析几何知识求最值题型题型二二非线性目标函数的最值问题非线性目标函数的最值问题【例例2】课前探究学习课前探究学习课堂讲练互动课堂讲练互动解解(1)作出可行域如图所示,作出可行域如图所示,A(1,3),B(3,1),C(7,9)zx2(y5)2表示可行域内任一点表示可行域内任一点(x,y)到点到点M(0,5)的的距离的平方,距离的平方,过过M作作AC的
9、垂线,易知垂足在的垂线,易知垂足在AC上,上,课前探究学习课前探究学习课堂讲练互动课堂讲练互动课前探究学习课前探究学习课堂讲练互动课堂讲练互动 非线性目标函数的最值问题,要充分理解非线非线性目标函数的最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离性目标函数的几何意义,诸如两点间的距离(或平方或平方)点点到直线的距离,过已知两点的直线斜率等到直线的距离,过已知两点的直线斜率等常见代数式的几何意义主要有:常见代数式的几何意义主要有:课前探究学习课前探究学习课堂讲练互动课堂讲练互动 (2010广东高考广东高考)某营养师要为某个儿童预订午餐和晚某营养师要为某个儿童预订午餐和晚餐已知一个
10、单位的午餐含餐已知一个单位的午餐含12个单位的碳水化合物,个单位的碳水化合物,6个个单位的蛋白质和单位的蛋白质和6个单位的维生素个单位的维生素C;一个单位的晚餐含;一个单位的晚餐含8个单位的碳水化合物,个单位的碳水化合物,6个单位的蛋白质和个单位的蛋白质和10个单位的维个单位的维生素生素C.另外,该儿童这两餐需要的营养中至少含另外,该儿童这两餐需要的营养中至少含64个单位个单位的碳水化合物,的碳水化合物,42个单位的蛋白质和个单位的蛋白质和54个单位的维生素个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是如果一个单位的午餐、晚餐的费用分别是2.5元和元和4元,那元,那么要满足上述的营养要
11、求,并且花费最少,应当为该儿童么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?分别预订多少个单位的午餐和晚餐?审题指导审题指导 题型题型三三线性规划的实际应用线性规划的实际应用【例例3】课前探究学习课前探究学习课堂讲练互动课堂讲练互动规范解答规范解答 设需要预订满足要求的午餐和晚餐分别为设需要预订满足要求的午餐和晚餐分别为x个个单位和单位和y个单位,所花的费用为个单位,所花的费用为z元,则依题意得:元,则依题意得:z2.5x4y,且,且x,y满足满足课前探究学习课前探究学习课堂讲练互动课堂讲练互动让目标函数表示的直线让目标函数表示的直线2.5x4yz在可行域上
12、平移在可行域上平移由此可知由此可知z2.5x4y在在B(4,3)处取得最小值处取得最小值 (10分分)因此,应当为该儿童预订因此,应当为该儿童预订4个单位的午餐和个单位的午餐和3个单位的晚个单位的晚餐,就可满足要求餐,就可满足要求 (12分分)课前探究学习课前探究学习课堂讲练互动课堂讲练互动【题后反思题后反思】用图解法解线性规划应用题的具体步骤为:用图解法解线性规划应用题的具体步骤为:(1)设元,并列出相应的约束条件和目标函数;设元,并列出相应的约束条件和目标函数;(2)作图:准确作图,平移找点;作图:准确作图,平移找点;(3)求解:代入求解,准确计算;求解:代入求解,准确计算;(4)检验:根
13、据结果,检验反馈检验:根据结果,检验反馈课前探究学习课前探究学习课堂讲练互动课堂讲练互动 数形结合的主要解题策略是:数数形结合的主要解题策略是:数形形问题的解决;问题的解决;或:形或:形数数问题的解决数与形结合的基本思路是:根问题的解决数与形结合的基本思路是:根据数的结构特征构造出与之相适应的几何图形,并利用直据数的结构特征构造出与之相适应的几何图形,并利用直观特征去解决数的问题;或者将要解决的形的问题转化为观特征去解决数的问题;或者将要解决的形的问题转化为数量关系去解决数量关系去解决 已知已知1xy4且且2xy3,且,且z2x3y的取的取值范围是值范围是_(答案用区间表示答案用区间表示)思路
14、分析思路分析 如果把如果把1xy4,2xy3看作变量看作变量x,y满足的线性约束条件,把满足的线性约束条件,把z2x3y看作目标函数,问题看作目标函数,问题就转化为一个线性规划问题就转化为一个线性规划问题方法技巧方法技巧数形结合思想在线性规划中的应用数形结合思想在线性规划中的应用【示示例例】课前探究学习课前探究学习课堂讲练互动课堂讲练互动在可行域内平移直线在可行域内平移直线2x3y0,当直线经过当直线经过xy2与与xy4的交点的交点A(3,1)时,目标函数时,目标函数有最小值,有最小值,zmin23313;当直线经过当直线经过xy1与与xy3的交点的交点B(1,2)时,目时,目标函数有最大值,标函数有最大值,zmax21328.所以所以z3,8答案答案3,8课前探究学习课前探究学习课堂讲练互动课堂讲练互动方法点评方法点评 如果两个变量如果两个变量(或其代数式或其代数式)具有约束范围,且具有约束范围,且所求的目标式中含有这两个变量,可以考虑使用线性规所求的目标式中含有这两个变量,可以考虑使用线性规划的方法求解,即把数的问题转化为形的问题来解划的方法求解,即把数的问题转化为形的问题来解决实质上,整个线性规划问题的解决都是数形结合思决实质上,整个线性规划问题的解决都是数形结合思想方法的体现想方法的体现