2020年河北省中考数学复习专题训练课件-课题5:一次方程(组)及其应用(含答案).pptx

上传人(卖家):Q弹啤酒肚 文档编号:476331 上传时间:2020-04-19 格式:PPTX 页数:34 大小:677.01KB
下载 相关 举报
2020年河北省中考数学复习专题训练课件-课题5:一次方程(组)及其应用(含答案).pptx_第1页
第1页 / 共34页
2020年河北省中考数学复习专题训练课件-课题5:一次方程(组)及其应用(含答案).pptx_第2页
第2页 / 共34页
2020年河北省中考数学复习专题训练课件-课题5:一次方程(组)及其应用(含答案).pptx_第3页
第3页 / 共34页
2020年河北省中考数学复习专题训练课件-课题5:一次方程(组)及其应用(含答案).pptx_第4页
第4页 / 共34页
2020年河北省中考数学复习专题训练课件-课题5:一次方程(组)及其应用(含答案).pptx_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、栏目索引 课题课题5 5 一次方程一次方程( (组组) )及其应用及其应用 栏目索引 总纲目录 基础基础知识梳理知识梳理 考点一 等式的基本性质 考点二 一元一次方程的概念及其解法 考点三 二元一次方程组的概念及其解法 考点四 一次方程(组)的应用 栏目索引 总纲目录 中考题型突破中考题型突破 题型一 考查一元一次方程的相关概念及解 法 题型二 考查二元一次方程组的解法 题型三 考查一次方程(组)的应用 栏目索引 总纲目录 易错一 利用去分母解一元一次方程时出现 漏乘的错误 易错二 利用去分母解一元一次方程时忽略 分数线的括号作用 易错三 不能根据实际问题的意义对解方程所 得的根进行正确的取舍

2、 易混易错突破易混易错突破 栏目索引 河北考情探究 考点 年份 题号 分值 考查方式 1.一元一次方程及其解法 2018 22 9 以解答题的形式,与探求数字的变化规律相结合,考查一元一次方 程的解法及应用 2017 24 10 以解答题的形式,以求直线与坐标轴的交点为问题情境,考查一元 一次方程的解法 2016 22 9 以解答题的形式,以求多边形的内角和的知识为载体,考查一元一 次方程的解法 2.二元一次方程组及其解法 2018 24 10 以解答题的形式,以函数知识为载体,考查二元一次方程组的解法 2017 26 12 以解答题的形式,以待定系数法确定一次函数表达式为问题情境, 考查二元

3、一次方程组的解法 2016 24 10 以求一次函数表达式的知识为载体,考查二元一次方程组的解法 备考策略:纵观我省近几年的中考试题,一次方程(组)及其解法是必考内容,但单独考查的题目较少,常与线段或角的计算、函数、不等式等知识 相结合进行综合考查,考查的内容以基础题为主.预计今后我省中考对本部分内容的考查不会有较大的变化. 河北考情探究 栏目索引 基础知识梳理 考点一考点一 等式的基本性质等式的基本性质 基础知识梳理 1.等式两边同时加上(或减去)同一个数或同一个整式,所得的结果仍是等式. 字母表示:如果a=b,那么a c =bc. 2.等式两边同时乘(或除以)同一个数(除数不为0),所得的

4、结果仍是等式.字母 表示:如果a=b,那么a c=b c 或 = (c0). a c b c 栏目索引 基础知识梳理 1.方程:含有未知数的等式叫做方程. 考点二考点二 一元一次方程的概念及其解法一元一次方程的概念及其解法 2.方程的解:使方程左右两边相等的 未知数 的值叫做方程的解. 3.解方程:求方程解的过程叫做解方程. 4.一元一次方程:方程仅含有 一 个未知数,并且所含未知数的项的次数 是 1 ,这样的方程叫做一元一次方程,一元一次方程的一般形式: ax=b(a0) . 5.解一元一次方程的一般步骤 去分母;去括号;移项;合并同类项;系数化为1. 栏目索引 基础知识梳理 1.二元一次方

5、程:含有 两 个未知数,并且含有未知数的项的次数都是 1 的方程叫做二元一次方程. 考点三考点三 二元一次方程组的概念及其解法二元一次方程组的概念及其解法 2.二元一次方程组:含有两个未知数,并且含有未知数的项的次数都是1的方 程组叫做二元一次方程组. 栏目索引 基础知识梳理 3.二元一次方程组的解法 (1)代入消元法:将其中一个方程中的某个未知数用含有 另一个 未知数 的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次 方程组为一元一次方程,这种解二元一次方程组的方法称为代入消元法. (2)加减消元法:通过方程两边分别 相加(减) 消去一个未知数,这种解二 元一次方程组的方

6、法称为加减消元法. 栏目索引 基础知识梳理 1.列方程(组)解应用题的一般步骤:(1)审题,寻找题目中的等量关系;(2)设未知 数;(3)根据所设的未知数与等量关系列出方程(组);(4)解方程(组);(5)检验并 写出答案. 考点四考点四 一次方程一次方程(组组)的应用的应用 栏目索引 基础知识梳理 常见问题 重要的关系式 销售利 润问题 利润=售价- 成本 ; 销售总利润=每件利润销售数量 储蓄利 息问题 利息=本金利率期数; 本息和=本金+利息=本金(1+利率期数); 贷款利息=贷款额利率期数 工程问题 工作量=工作效率 工作时间 浓度问题 浓度= 100%; 溶液质量=溶质质量+溶剂质量

7、 行程问题 (1)相遇问题:(甲乙相向而行直至相遇):全路程=甲走的路程 + 乙走的路程 (2)相离问题:(甲乙同地出发背向而行)相离路程=甲走的路程 + 乙走的路程 (3)追及问题: (i)同地同向不同时出发:前者走的路程=追者走的路程; (ii)同时不同地出发:前者走的路程+两地间的距离=追者走的路程 (4)水中航行问题: (i)顺水速度=静水速度+ 水速 ; (ii)逆水速度=静水速度- 水速 () () 溶质的质量 体积 溶液的质量 体积 2.常见的几种等量关系 栏目索引 中考题型突破 题型一题型一 考查一元一次方程的相关概念及解法考查一元一次方程的相关概念及解法 该题型主要考查一元一

8、次方程的概念、一元一次方程的解与一元一次方程 的解法,题型多以选择题、填空题、解答题的形式出现,以考查基础知识为 主. 中考题型突破 栏目索引 中考题型突破 典例典例1 (2018沧州模拟)某同学在解方程 = -1进行去分母变形时,方 程右边的-1忘记乘6,因而求得的解为x=-2,请你求出a的值,并求出方程的正确 解. 21 3 x 2 xa 答案答案 根据题意,右边的-1忘记乘6所得的方程为:2(2x-1)=3(x+a)-1, 把x=-2代入方程,得2(-4-1)=3(-2+a)-1, 解得a=-1. 当a=-1时,原方程可化为: = -1, 去分母,得2(2x-1)=3(x-1)-6, 去

9、括号,得4x-2=3x-3-6, 移项、合并同类项,得x=-7. 21 3 x1 2 x 栏目索引 中考题型突破 名师点拨名师点拨 本题的解题技巧是“将错就错”,即:利用错解在错误的方程中求 得a的值,由此得到正确的方程,而达到这一点,必须深刻理解方程的解的概念. 栏目索引 中考题型突破 变式训练变式训练1 (2017石家庄藁城模拟)解下列方程: (1)10-4(x+3)=2(x-1); (2) + =1. 25 6 x 3 4 x 答案答案 (1)去括号,得10-4x-12=2x-2, 移项、合并同类项,得-6x=0, 系数化为1,得x=0. (2)去分母,得2(2x-5)+3(3-x)=1

10、2, 去括号,得4x-10+9-3x=12, 移项、合并同类项,得x=13. 栏目索引 中考题型突破 题型二题型二 考查二元一次方程组的解法考查二元一次方程组的解法 该题型主要考查二元一次方程组的解法,主要内容有:判断某组数是不是二元 一次方程组的解,解二元一次方程组,根据二元一次方程组的解求某个字母的 值等.在解二元一次方程组时,注意灵活选用适当的解法. 典例典例2 (2017石家庄长安模拟)解下列方程组: (1) (2) 347, 54; xy xy 6, 23 3()4(). xyxy xyxy 栏目索引 中考题型突破 答案答案 (1)由得y=5x-4, 把代入,得3x+4(5x-4)=

11、7, 解得x=1. 把x=1代入,得y=1. 方程组的解为 (2)原方程组整理,得 +,得12y=36,解得y=3. 把y=3代入,得-x+73=0,解得x=21. 1, 1. x y 536, 70, xy xy 原方程组的解为 21, 3. x y 栏目索引 中考题型突破 名师点拨名师点拨 在解二元一次方程组时,要注意根据具体的题目特点灵活选用代 入消元法或加减消元法,一般来说,当其中一个未知数能比较方便地用另一个 未知数表示时,采用代入消元法;当各方程中同一个未知数的系数的绝对值相 等或成整数倍时,采用加减消元法. 栏目索引 中考题型突破 变式训练变式训练2 (2018沧州模拟)解下列方

12、程组: (1) (2) 4812, 325; xy xy 220, 634 212. 5 xy xy y 答案答案 (1) 由得2y=3x-5, 把代入,得4x+4(3x-5)=12,解得x=2. 把x=2代入,得y= . 方程组的解是 4812, 325. xy xy 1 2 2, 1 . 2 x y 栏目索引 中考题型突破 将代入,得 +2y=12, 解得y=5. 把y=5代入,得x=3.5. 原方程组的解为 3 24 5 3.5, 5. x y (2) 由得2x-y=2, 220, 634 212, 5 xy xy y 栏目索引 中考题型突破 题型三题型三 考查一次方程考查一次方程(组组

13、)的应用的应用 该题型主要考查利用一元一次方程或二元一次方程组解决实际问题,或根据 实际问题列一元一次方程,根据实际问题列二元一次方程组等. 栏目索引 中考题型突破 典例典例3 (2018永州中考)在永州市青少年禁毒教育活动中,某班男生小明与班 上同学一起到禁毒教育基地参观,以下是小明和妈妈的对话,请根据对话内 容,求小明班上参观禁毒教育基地的男生和女生的人数. 栏目索引 中考题型突破 答案答案 解法一:设小明班上参观禁毒教育基地的男生人数为x人,则女生人数 为(55-x)人. 根据题意,得x=1.5(55-x)+5, 解这个方程,得x=35. 55-x=55-35=20. 答:小明班上参观禁

14、毒教育基地的男生人数为35人,女生人数为20人. 解法二:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人. 根据题意,得 55, 1.55. xy xy 栏目索引 中考题型突破 解这个方程组,得 答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人. 35, 20. x y 名师点拨名师点拨 列方程(组)解决实际问题的关键是能列出符合题意的方程(组),而 列出方程(组)的关键是寻找题目中的等量关系,为此需要认真审题,从题目中 的关键性词语或字里行间挖掘出解题所必需的正确信息.同时注意,某些实际 问题既可以列一元一次方程求解,也可以列二元一次方程组求解,但解题的繁 简程度

15、可能会有所不同,因此,当题目中没有明确要求时,可根据个人的解题 习惯,采用比较方便的方法求解. 栏目索引 中考题型突破 变式训练变式训练3 (2017唐山滦南四模)某班去看演出,甲种票每张24元,乙种票每 张18元.如果35名学生购票恰好用去750元,那么甲、乙两种票各买了多少张? 答案答案 设甲种票买了x张,则乙种票买了(35-x)张. 由题意,得24x+18(35-x)=750. 解得x=20. 35-x=15. 答:甲种票买了20张,乙种票买了15张. 栏目索引 易混易错突破 易错一易错一 利用去分母解一元一次方程时出现漏乘的错误利用去分母解一元一次方程时出现漏乘的错误 易混易错突破 典

16、例典例1 (2017秦皇岛模拟)解方程: - =1. 51 3 x 21 6 x 易错警示易错警示 本题容易出现的错误是在方程的两边同乘6时,漏乘常数项,其原 因是对等式的性质理解不清,特别是在常数项为1的题目中,这种错误出现的 机率更大. 栏目索引 易混易错突破 解析解析 去分母,得2(5x+1)-(2x-1)=6, 去括号,得10x+2-2x+1=6, 移项、合并同类项,得8x=3, 系数化为1,得x= . 3 8 栏目索引 易混易错突破 易错二易错二 利用去分母解一元一次方程时忽略分数线的括号作用利用去分母解一元一次方程时忽略分数线的括号作用 典例典例2 (2017河北模拟)解方程: =

17、1- . 2 2 x5 3 x 易错警示易错警示 本题在去分母时容易出现符号方面的错误,其原因是忽略了分数 线的括号作用,因此当分数前面是“-”且分子是多项式时,一定要提高警惕. 解析解析 去分母,得3(x+2)=6-2(x-5), 去括号,得3x+6=6-2x+10, 移项、合并同类项,得5x=10, 系数化为1,得x=2. 栏目索引 易混易错突破 易错三易错三 不能根据实际问题的意义对解方程所得的根进行正确的取舍不能根据实际问题的意义对解方程所得的根进行正确的取舍 典例典例3 小聪说,某三个连续偶数的和是50.你认为小聪说得正确吗?如果正 确,请你求出这三个连续偶数;如果不正确,请说明理由

18、. 易错警示易错警示 如果设最小的偶数为x,因为列出方程并求解时所得的解为正数, 容易误认为小聪的说法正确,其原因是忽略了“偶数”这个限制条件. 解析解析 不正确.理由:设三个连续偶数分别为x,x+2,x+4. 根据题意,得x+x+2+x+4=50, 解方程,得x= . 不是偶数,这三个连续偶数不存在. 44 3 44 3 栏目索引 随堂巩固检测 1.下列式子:9x+2; =2;(1-x)(1+x)=3; x- x= (x-3).其中,一元一次方 程共有 ( A ) A.1个 B.2个 C.3个 D.4个 1 x 1 3 1 5 1 2 随堂巩固检测 2.方程 x- =1,去分母后,正确的结果

19、是 ( B ) A.2x-3(x-1)=1 B.2x-3(x-1)=6 C.2x-3x-3=6 D.2x+3x-3=6 1 3 1 2 x 栏目索引 随堂巩固检测 3.方程2x+3=7的解是 ( D ) A.x=5 B.x=4 C.x=3.5 D.x=2 4.二元一次方程2x+y=9的正整数解有 ( D ) A.1组 B.2组 C.3组 D.4组 栏目索引 随堂巩固检测 5.(2018安徽长丰三模)我国古代名著九章算术中有一个问题,原文:“今 有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?” 译文:野鸭从南海起飞,7天后到达北海;大雁从北海起飞,9日后到达南海,今野 鸭

20、和大雁分别从南海和北海同时起飞,几天后相遇?设x天后相遇,可列方程为 ( B ) A.(7+9)x=1 B. x=1 C. x=1 D. x=1 11 97 11 97 11 79 栏目索引 随堂巩固检测 6.已知方程组 的解为 则2a-3b的值为 ( B ) A.4 B.6 C.-6 D.-4 4, 2 axby axby 2, 1, x y 7.(2018深圳模拟)将等式3a-2b=2a-2b变形,过程如下: 因为3a-2b=2a-2b,所以3a=2a(第一步), 所以3=2(第二步). 上述过程中,第一步的根据是 等式的基本性质1 , 第二步得出了明显错误的结论,其原因是 没有考虑a=0的情况 . 栏目索引 随堂巩固检测 8.若两个关于x,y的二元一次方程组 与 有相同的解, 则mn的值为 6 . 31, 36 mxny xy 52, 428 xnyn xy 9.(2017广东中考)学校团委组织志愿者到图书馆整理一批新进的图书.若男 生每人整理30本,女生每人整理20本,则共能整理680本;若男生每人整理50本, 女生每人整理40本,则共能整理1 240本.求男生、女生志愿者各有多少人. 答案答案 设男生志愿者有x人,女生志愿者有y人,则 解得 答:男生志愿者有12人,女生志愿者有16人. 3020680, 50401 240, xy xy 12, 16. x y

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 中考复习 > 二轮专题
版权提示 | 免责声明

1,本文(2020年河北省中考数学复习专题训练课件-课题5:一次方程(组)及其应用(含答案).pptx)为本站会员(Q弹啤酒肚)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|