1、定义定义 设函数设函数),(yxfz 在点在点),(00yx的某一邻的某一邻域内有定义,当域内有定义,当y固定在固定在0y而而x在在0 x处有增量处有增量x 时,相应地函数有增量时,相应地函数有增量 ),(),(0000yxfyxxf ,如果如果xyxfyxxfx ),(),(lim00000存在,则称存在,则称此极限为函数此极限为函数),(yxfz 在点在点),(00yx处对处对x的的偏导数,记为偏导数,记为一、偏导数的定义及其计算法第二节第二节 偏导数偏导数同理可定义同理可定义函数函数),(yxfz 在点在点),(00yx处对处对y的偏导数,的偏导数,为为yyxfyyxfy ),(),(l
2、im00000 记为记为00yyxxyz ,00yyxxyf ,00yyxxyz 或或),(00yxfy.00yyxxxz ,00yyxxxf ,00yyxxxz 或或),(00yxfx.如如果果函函数数),(yxfz 在在区区域域D内内任任一一点点),(yx处处对对x的的偏偏导导数数都都存存在在,那那么么这这个个偏偏导导数数就就是是x、y的的函函数数,它它就就称称为为函函数数),(yxfz 对对自自变变量量x的的偏偏导导数数,记记作作xz ,xf ,xz或或),(yxfx.同理可以定义函数同理可以定义函数),(yxfz 对自变量对自变量y的偏导的偏导数,记作数,记作yz ,yf ,yz或或)
3、,(yxfy.偏导数的概念可以推广到二元以上函数偏导数的概念可以推广到二元以上函数如如 在在 处处 ),(zyxfu ),(zyx,),(),(lim),(0 xzyxfzyxxfzyxfxx ,),(),(lim),(0yzyxfzyyxfzyxfyy .),(),(lim),(0zzyxfzzyxfzyxfzz 例例 1 1 求求 223yxyxz 在点在点)2,1(处的偏导数处的偏导数解解 xz;32yx yz.23yx 21yxxz,82312 21yxyz.72213 例例 2 2 设设yxz )1,0(xx,求求证证 zyzxxzyx2ln1 .证证 xz,1 yyx yz,ln
4、xxyyzxxzyx ln1xxxyxyxyylnln11 yyxx .2z 原结论成立原结论成立例例 3 3 设设22arcsinyxxz ,求,求xz ,yz .解解 xz xyxxyxx2222211322222)(|yxyyyx .|22yxy|)|(2yy yz yyxxyxx222221132222)()(|yxxyyyx yyxx1sgn22 )0(y00 yxyz不存在不存在22,.rrryzxyz2例4 已知r=x求:,:xy z解 这是一个三元函数 对 求偏导时 将看成常量 得22212;2rxxxrxyz:,ryrzyrzr同理例例 5 5 已知理想气体的状态方程已知理想
5、气体的状态方程RTpV (R为常数),求证:为常数),求证:1 pTTVVp.证证 VRTp;2VRTVp pRTV;pRTV RpVT;RVpT pTTVVp2VRT pR RV.1 pVRT 偏导数偏导数xu 是一个整体记号,不能拆分是一个整体记号,不能拆分;).0,0(),0,0(,),(,yxffxyyxfz求求设设例例如如 有关偏导数的几点说明:有关偏导数的几点说明:、求分界点、不连续点处的偏导数要用求分界点、不连续点处的偏导数要用定义求;定义求;解解xxfxx0|0|lim)0,0(0 0).0,0(yf、偏导数存在与连续的关系、偏导数存在与连续的关系例如例如,函数函数 0,00,
6、),(222222yxyxyxxyyxf,依定义知在依定义知在)0,0(处,处,0)0,0()0,0(yxff.但函数在该点处并不连续但函数在该点处并不连续.偏导数存在偏导数存在 连续连续.一元函数中在某点可导一元函数中在某点可导 连续,连续,多元函数中在某点偏导数存在多元函数中在某点偏导数存在 连续,连续,4、偏导数的几何意义、偏导数的几何意义,),(),(,(00000上上一一点点为为曲曲面面设设yxfzyxfyxM 如图如图 偏导数偏导数),(00yxfx就是曲面被平面就是曲面被平面0yy 所截得的曲线在点所截得的曲线在点0M处的切线处的切线xTM0对对x轴的轴的斜率斜率.偏导数偏导数)
7、,(00yxfy就是曲面被平面就是曲面被平面0 xx 所截得的曲线在点所截得的曲线在点0M处的切线处的切线yTM0对对y轴的轴的斜率斜率.几何意义几何意义:),(22yxfxzxzxxx ),(22yxfyzyzyyy ),(2yxfyxzxzyxy ),(2yxfxyzyzxyx 函函数数),(yxfz 的的二二阶阶偏偏导导数数为为纯偏导纯偏导混合偏导混合偏导定义:二阶及二阶以上的偏导数统称为高阶定义:二阶及二阶以上的偏导数统称为高阶偏导数偏导数.二、高阶偏导数例例 6 设设13323 xyxyyxz,求求22xz 、xyz 2、yxz 2、22yz 及33xz .解解xz ,33322yy
8、yx yz ;9223xxyyx 22xz ,62xy 22yz ;1823xyx 33xz ,62y xyz 2.19622 yyxyxz 2,19622 yyx例例 7 7 设设byeuaxcos,求求二二阶阶偏偏导导数数.解解,cosbyaexuax ;sinbybeyuax ,cos222byeaxuax ,cos222byebyuax ,sin2byabeyxuax .sin2byabexyuax 定理定理 如果函数如果函数),(yxfz 的两个二阶混合偏导数的两个二阶混合偏导数xyz 2及及yxz 2在区域在区域 D D 内连续,那末在该区域内这内连续,那末在该区域内这两个二阶混合偏导数必相等两个二阶混合偏导数必相等问题:问题:混合偏导数都相等吗?具备怎样的条件才混合偏导数都相等吗?具备怎样的条件才相等?相等?解解),ln(21ln2222yxyx ,22yxxxu ,22yxyyu ,)()(2)(222222222222yxxyyxxxyxxu .)()(2)(222222222222yxyxyxyyyxyu 22222222222222)()(yxyxyxxyyuxu .0 例例 6 6 验验证证函函数数22ln),(yxyxu 满满足足拉拉普普拉拉斯斯方方程程.02222 yuxu