1、2.2.2椭圆的几何性质1.椭圆的定义椭圆的定义:到两定点到两定点F1、F2的距离之和为常数(大于的距离之和为常数(大于|F1F2|)的)的动点的轨迹叫做椭圆。动点的轨迹叫做椭圆。2.椭圆的标准方程是:椭圆的标准方程是:3.椭圆中椭圆中a,b,c的关系是的关系是:a2=b2+c2|)|2(2|2121FFaaPFPF当焦点在当焦点在X轴上时轴上时当焦点在当焦点在Y轴上时轴上时)0(12222babyax)0(12222babxayF1 F2 A1 B1 A2 B2 123-1-2-3-44y1 2 3 4 5-1-5-2-3-4xF2 F1 B2 A2 B1 A1 123-1-2-3-44y1
2、 2 3 4 5-1-5-2-3-4x思考:思考:观察上面两个图,并说出椭圆有什么特征?观察上面两个图,并说出椭圆有什么特征?1162522yx142522yx2、对称性、对称性:关于关于x轴,轴,y轴,原点都对称轴,原点都对称二、二、椭圆椭圆 简单的几何性质简单的几何性质12222byax1、范围:由、范围:由 1,1 得得 -axa,-byb 知知 椭圆落在椭圆落在x=a,y=b组成的矩形中组成的矩形中22ax22by oyB2B1A1A2F1F2cabYXOP(x,y)P1(-x,y)P2(-x,-y))0(12222babyax令令 x=0,得,得 y=?,说明椭圆与?,说明椭圆与 y
3、轴的交点?轴的交点?令令 y=0,得,得 x=?说明椭圆与?说明椭圆与 x轴的交点?轴的交点?*顶点:椭圆与它的对称轴顶点:椭圆与它的对称轴的四个交点,叫做椭圆的的四个交点,叫做椭圆的顶点。顶点。*长轴、短轴:线段长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴分别叫做椭圆的长轴和短轴。和短轴。a、b分别叫做椭圆的长半分别叫做椭圆的长半轴长和短半轴长。轴长和短半轴长。oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)123-1-2-3-44y123-1-2-3-44y1 2 3 4 5-1-5-2-3-4x1 2 3 4 5-1-5-2-3-4x根据前面所学有关
4、知识画出下列图形根据前面所学有关知识画出下列图形1162522yx142522yx(1)(2)A1 B1 A2 B2 B2 A2 B1 A1 用什么量来反映焦点离开中心的程度呢?ace 椭圆的焦距与长轴长的比:椭圆的焦距与长轴长的比:叫做椭圆的离心率。叫做椭圆的离心率。1离心率的取值范围:离心率的取值范围:2离心率对椭圆形状的影响:离心率对椭圆形状的影响:0ebabcea0,1 越 大 越 扁,越 小 越 圆a2=b2+c2标准方程标准方程范围范围对称性对称性顶点坐标顶点坐标焦点坐标焦点坐标半轴长半轴长离心率离心率 a a、b b、c c的关的关系系22221(0)xyabab|x|a,|y|
5、b关于关于x x轴、轴、y y轴成轴对称;轴成轴对称;关于原点成中心对称关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为长半轴长为a a,短短半轴长为半轴长为b.b.ababceaa2=b2+c222221(0)xyabba|x|b,|y|a同前同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前同前同前同前 它的长轴长是它的长轴长是:。短轴长是短轴长是:。焦距是焦距是:。离心率等于离心率等于:。焦点坐标是焦点坐标是:。顶点坐标是顶点坐标是:。外切矩形的面积等于外切矩形的面积等于:。108635(3,0
6、)(5,0)(0,4)80解题的关键:解题的关键:1、将椭圆方程转化为标准方程、将椭圆方程转化为标准方程 明确明确a、b1162522yx2、确定焦点的位置和长轴的位置、确定焦点的位置和长轴的位置例例2 2过适合下列条件的椭圆的标准方程:过适合下列条件的椭圆的标准方程:(1 1)经过点)经过点 、;(2 2)长轴长等于)长轴长等于 ,离心率等于离心率等于 (3,0)P(0,2)Q2035解解:(1 1)由题意,)由题意,,又又长轴在长轴在轴上,所以,椭圆的标准方程为轴上,所以,椭圆的标准方程为3a 2b x22194xy(2 2)由已知,由已知,所以椭圆的标准方程为所以椭圆的标准方程为 或或 220a 35cea10a 6c 22210664b 22110064xy22110064yx