1、反比例函数的图象和性质的综合运用学习目标学习目标1.理解反比例函数的系数 k 的几何意义,并将其灵活 运用于坐标系中图形的面积计算中.(重点、难点)2.能够解决反比例函数与一次函数的综合性问题.(重 点、难点)3.体会“数”与“形”的相互转化,学习数形结合的思想 方法,进一步提高对反比例函数相关知识的综合运 用能力.(重点、难点)反比例函数的图象是什么?反比例函数的性质与 k 有怎样的关系?反比例函数的图象是双曲线 当 k 0 时,两条曲线分别位于第一、三象限,在每个象限内,y 随 x 的增大而减小;当 k 0 时,两条曲线分别位于第二、四象限,在每个象限内,y 随 x 的增大而增大.问题1
2、问题2 用待定系数法求反比例函数的解析式 已知反比例函数的图象经过点 A(2,6).(1)这个函数的图象位于哪些象限?y 随 x 的增大如 何变化?解:因为点 A(2,6)在第一象限,所以这个函数的图象位于第一、三象限;在每一个象限内,y 随 x 的增大而减小.1例1(2)点B(3,4),C(,),D(2,5)是否在这个 函数的图象上?122445解:设这个反比例函数的解析式为 ,因为点 A(2,6)在其图象上,所以有 ,解得 k=12.kyx62k因为点 B,C 的坐标都满足该解析式,而点 D的坐标不满足,所以点 B,C 在这个函数的图象上,点 D 不在这个函数的图象上.所以反比例函数的解析
3、式为 .12yx解:当 x=3时,y=2,的图象上,xAyAk,反比例函数的性质与 k 有怎样的关系?如果x1x2,那么 y1 和 y2 有怎样的函数的图象上?已知反比例函数的图象经过点 A(2,6).支交于点 F,连接 OF,易知,观察右图,可知2 x 3.我们就 k 0 的情况给出证明:SA=SB=SC D.y=k1x 和 .推理:QAO与QBO的设点 P 的坐标为(a,b),y=k1x 和 .反比例函数的性质与 k 有怎样的关系?SOMB=OMBD2=222=2,k+b=2,若点 P 是反比例函数图象上的一点,过点 P 分别向推理:QAO与QBO的提示:当反比例函数图象在第二、四象限时,
4、注意已知反比例函数 的图象经过点 A(2,3)(1)求这个函数的表达式;kyx解:反比例函数 的图象经过点 A(2,3),把点 A 的坐标代入表达式,得 ,kyx32k 解得 k=6.这个函数的表达式为 .6yx(2)判断点 B(1,6),C(3,2)是否在这个函数的 图象上,并说明理由;解:分别把点 B,C 的坐标代入反比例函数的解析 式,因为点 B 的坐标不满足该解析式,点 C 的坐标满足该解析式,所以点 B 不在该函数的图象上,点 C 在该函 数的图象上(3)当 3 x 0,当 x 0 时,y 随 x 的增大而减小,当 3 x 1 时,6 y 2.反比例函数图象和性质的综合(1)图象的另
5、一支位于哪个象限?常数 m 的取值范围 是什么?Oxy 如图,是反比例函数 图象的一支.根据图象,回答下列问题:5myx解:因为这个反比例函数图象的一 支位于第一象限,所以另一支 必位于第三象限.由因为这个函数图象位于第一、三象限,所以m50,解得m5.2例2(2)在这个函数图象的某一支上任取点 A(x1,y1)和 点B(x2,y2).如果x1x2,那么 y1 和 y2 有怎样的 大小关系?解:因为 m5 0,所以在这个函数图象的任一支 上,y 都随 x 的增大而减小,因此当x1x2时,y1y2.如图,是反比例函数 的图象,则 k 的值可以是 ()1 kyxA1 B3 C1 D0OxyB反比例
6、函数解析式中 k 的几何意义1.在反比例函数 的图象上分别取点P,Q 向 x 轴、y 轴作垂线,围成面积分别为S1,S2的矩形,填写下页表格:4yx35123415xyOPP(2,2)Q(4,1)S1的值S2的值 S1与S2的关系猜想 S1,S2 与 k的关系4yx 4 4S1=S2S1=S2=k5432143232451QS1的值 S2的值S1与S2的关系猜想与 k 的关系P(1,4)Q(2,2)2.若在反比例函数 中也 用同样的方法分别取 P,Q 两点,填写表格:4yx4yx4 4S1=S2S1=S2=kyxOPQ由前面的探究过程,可以猜想:若点P是 图象上的任意一点,作 PA 垂直于 x
7、 轴,作 PB 垂直于 y 轴,矩形 AOBP 的面积与k的关系是S矩形 AOBP=|k|.xky yxOPS我们就 k 0 的情况给出证明:设点 P 的坐标为(a,b),AB点 P(a,b)在函数 的图象上,kyx ,即 ab=k.kba S矩形 AOBP=PBPA=ab=ab=k.若点 P 在第二象限,则 a0,若点 P 在第四象限,则 a0,bSBSC B.SASBSCC.SA=SB=SC D.SASC0)图像上的任意两点,PA,CD 垂直于 x 轴.设 POA 的面积为 S1,则 S1=;梯形CEAD 的面积为 S2,则 S1 与 S2 的大小关系是 S1 S2;POE 的面积 S3
8、和 S2 的大小关系是S2 S3.4yx2S1S2S3例4 如图所示,直线与双曲线交于 A,B 两点,P 是AB 上的点,AOC 的面积 S1、BOD 的面积 S2、POE 的面积 S3 的大小关系为 .S1=S2 S3解析:由反比例函数面积的不变性易知 S1=S2.PE 与双曲线的一支交于点 F,连接 OF,易知,SOFE=S1=S2,而 S3SOFE,所以 S1,S2,S3的大小关系为S1=S2 0b 0k1 0k2 0b 0 xyOxyO2合作探究合作探究k2 0b 0k1 0k2 0 xyOk1 0 xyO 函数 y=kxk 与 的图象大致是 ()0(kxkyD.xyOC.yA.yxB
9、.xyODOOk0k0k0k0由一次函数增减性得k0由一次函数与y轴交点知k0,则k0 x提示:由于两个函数解析式都含有相同的系数 k,可对 k 的正负性进行分类讨论,得出符合题意的答案.例6 在同一直角坐标系中,函数 与 y=ax+1(a0)的图象可能是 ()ayx A.yxOB.yxOC.yxOD.yxOB支位于第一象限,所以另一支解:因为 m5 0,所以在这个函数图象的任一支支交于点 F,连接 OF,易知,设点 P 的坐标为(a,b),面积和 k 的关系是由因为这个函数图象位于第一、对于反比例函数 ,式,因为点 B 的坐标不满足该解析式,点 C由于这两个函数的图象交于点 P (3,4),
10、则点 P(3,4)是这两个函数图象上的点,即点 P 的坐标分别满足这两个解析式.大小关系?(1)这个函数的图象位于哪些象限?y 随 x 的增大如对于反比例函数 ,PA,CD 垂直于 x 轴.我们就 k 0 的情况给出证明:4k+b=,如图所示,直线与双曲线交于 A,B 两点,P 是AB 上的点,AOC 的面积 S1、BOD 的面积 S2、POE 的面积 S3 的大小关系为 .(1)求 k 的值;设点 P 的坐标为(a,b),反比例函数 的图象与一次函数 y=2x+1 的 如图是一次函数 y1=kx+b 和反比例函数 的图象,观察图象,当 y1y2 时,x 的取值范围为 .23yx0 2 x 3
11、2myx解析:y1y2 即一次函数图象处于反比例函数图象的上方时.观察右图,可知2 x 3.方法总结:对于一些题目,借助函数图象比较大小更加简洁明了.例7 如图,一次函数 y1=k1x+b(k10)的图象与反比例函数 的图象交于 A,B 两点,观察图象,当y1y2时,x 的取值范围是 22kyx12yx0A B 1 x 2方法总结:解决反比例函数有关的面积问题,可以把原图形通过切割、平移等变换,转化为较容易求面积的图形.x 轴、y 轴作垂线,垂足分别为点 M,N,若四边形根据图象,回答下列问题:已知反比例函数的图象经过点 A(2,6).得 k=2,故其解析式为 .(1)求 A,B 两点的坐标;
12、反比例函数与一次函数的综合解:因为 m5 0,所以在这个函数图象的任一支函数 y=kxk 与 的图象大致是 ()y1y2时,x 的取值范围是 对于反比例函数 ,解得 k=6.设点 P 的坐标为(a,b),解:当 x=3时,y=2,1 x 2所以反比例函数的解析式为 .设点 P 的坐标为(a,b),解:当 x=3时,y=2,2 D.我们就 k 0 的情况给出证明:已知一个正比例函数与一个反比例函数的图象交于点 P(3,4).试求出它们的解析式,并画出图象.由于这两个函数的图象交于点 P (3,4),则点 P(3,4)是这两个函数图象上的点,即点 P 的坐标分别满足这两个解析式.解:设正比例函数、
13、反比例函数的解析式分别为 y=k1x 和 .2kyx所以 ,.143k 243k解得 ,.143k 212k 例8P则这两个函数的解析式分别为 和 ,它们的图象如图所示.43yx 12yx 这两个图象有何共同特点?你能求出另外一个交点的坐标吗?说说你发现了什么?想一想:反比例函数 的图象与正比例函数 y=3x 的图象的交点坐标为 12yx(2,6),(2,6)解析:联立两个函数解析式,解方程即可.已知 A(4,),B(1,2)是一次函数 y=kx+b与反比例函数 图象的两个交点,求一次函数解析式及 m 的值.myx12解:把A(4,),B(1,2)代入 y=kx+b中,得 124k+b=,12
14、k+b=2,k=,解得 b=,1252所以一次函数的解析式为 y=x+.1252例9把 B(1,2)代入 中,得 m=12=2.myxA.4 B.2 C.2 D.不确定1.如图所示,P 是反比例函数 的图象上一点,过点 P 作 PB x 轴于点 B,点 A 在 y 轴上,ABP 的面积为 2,则 k 的值为 ()kyxOBAPxyA2.反比例函数 的图象与一次函数 y=2x+1 的 图象的一个交点是(1,k),则反比例函数的解析 式是_ xky 3yx3.如图,直线 y=k1x+b 与反比例函数 (x0)交于A,B两点,其横坐标分别为1和5,则不等式k1x+b 的解集是_2kyx2kx1x5O
15、BAxy154.已知反比例函数 的图象经过点 A(2,4).(1)求 k 的值;kyx解:反比例函数 的图象经过点 A(2,4),把点 A 的坐标代入表达式,得 ,kyx42k 解得k=8.(2)这个函数的图象分布在哪些象限?y 随 x 的增大 如何变化?解:这个函数的图象位于第二、四象限,在每一个 象限内,y 随 x 的增大而增大.(3)画出该函数的图象;Oxy解:如图所示.(4)点 B(1,8),C(3,5)是否在该函数的图象上?因为点 B 的坐标满足该解析式,而点 C 的坐标不满足该解析式,所以点 B 在该函数的图象上,点 C 不在该函数的图象上.解:该反比例函数的解析式为 .8yx x
16、yOBA5.如图,直线 y=ax+b 与双曲线 交于两点 A(1,2),B(m,-4)两点,(1)求直线与双曲线的解析式;kyx所以一次函数的解析式为 y=4x2.把A,B两点坐标代入一次函数解析式中,得到a=4,b=2.解:把 B(1,2)代入双曲线解析式中,得 k=2,故其解析式为 .当y=4时,m=.2yx12(2)求不等式 ax+b 的解集.kxxyOBA解:根据图象可知,若 ax+b ,kx则 x1或 x0.126.如图,反比例函数 与一次函数 y=x+2 的图象交于 A,B 两点.(1)求 A,B 两点的坐标;AyOBx8yx 解:8yx ,y=x+2,解得 x=4,y=2 所以A(2,4),B(4,2).或 x=2,y=4.作ACx轴于C,BDx轴于D,则AC=4,BD=2.(2)求AOB的面积.解:一次函数与x轴的交点为M(2,0),OM=2.OAyBxMCDSOMB=OMBD2=222=2,SOMA=OMAC2=242=4,SAOB=SOMB+SOMA=2+4=6.面积问题面积不变性与一次函数的综合判断反比例函数和一次函数在同一直角坐标系中的图象,要对系数进行分类讨论,并注意b 的正负中心对称图形,其与正比例函数的交点关于原点中心对称反比例函数图象和性质的综合运用