1、等比数列的前 项和公式(1)n问题1 等比数列的定义和通项公式是什么?问题1 等比数列的定义和通项公式是什么?120.nnaqnqa,(1)等比数列的定义:11100.nnaa qaq,(1)等比数列的定义:(2)等比数列的通项公式:问题1 等比数列的定义和通项公式是什么?120.nnaqnqa,问题2 国际象棋起源于古印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个
2、要求不高,就欣然同意了.问题2 国际象棋起源于古印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.问题2 国际象棋起源于古印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个
3、格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.问题2 国际象棋起源于古印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.追问1:国王一共应该给他多少颗麦粒?问题2 国际象棋起源于古印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里
4、放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.问题2 国际象棋起源于古印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.追问1:国王一共应该给他多少颗麦粒?236312222追问2:如何计算?23631 2222追问2:如何计算?
5、23631 2222共64项追问2:如何计算?23631 2222首项:1共64项追问2:如何计算?23631 2222首项:1公比:2共64项追问2:如何计算?23631 2222首项:1公比:2共64项追问3:如何求一个等比数列的前 项的和?n追问2:如何计算?23631 2222首项:1公比:2共64项追问3:如何求一个等比数列的前 项的和?n追问4:等差数列有求和公式,那么你能否类比等差数列前 项和公式的求法,推导出等比数列的前 项和?nn回顾:等差数列的前 项和公式的推导过程.n回顾:等差数列的前 项和公式的推导过程.n等差数列 的前 项和是123,na a aan回顾:等差数列的前
6、 项和公式的推导过程.n等差数列 的前 项和是123,na a aan12321.nnnnSaaaaaa回顾:等差数列的前 项和公式的推导过程.n等差数列 的前 项和是123,na a aan12321.nnnnSaaaaaa根据等差数列的定义1.nnaad回顾:等差数列的前 项和公式的推导过程.n等差数列 的前 项和是123,na a aan12321.nnnnSaaaaaa根据等差数列的定义1.nnaad12321nnnnSaaaaaa回顾:等差数列的前 项和公式的推导过程.n等差数列 的前 项和是123,na a aan12321.nnnnSaaaaaa12321nnnnSaaaaaa1
7、2321nnnnSaaaaaa根据等差数列的定义1.nnaad回顾:等差数列的前 项和公式的推导过程.n等差数列 的前 项和是123,na a aan12321.nnnnSaaaaaa12321nnnnSaaaaaa12321nnnnSaaaaaa根据等差数列的定义1.nnaad回顾:等差数列的前 项和公式的推导过程.n等差数列 的前 项和是123,na a aan12321.nnnnSaaaaaa12321nnnnSaaaaaa12321nnnnSaaaaaa+得根据等差数列的定义1.nnaad回顾:等差数列的前 项和公式的推导过程.n等差数列 的前 项和是123,na a aan12321
8、.nnnnSaaaaaa12321nnnnSaaaaaa12321nnnnSaaaaaa12.nnSn aa+得,根据等差数列的定义1.nnaad回顾:等差数列的前 项和公式的推导过程.n等差数列 的前 项和是123,na a aan12321.nnnnSaaaaaa12321nnnnSaaaaaa12321nnnnSaaaaaa12.nnSn aa+得,所以1.2nnn aaS根据等差数列的定义1.nnaad回顾:等差数列的前 项和公式的推导过程.n等差数列 的前 项和是123,na a aan12321.nnnnSaaaaaa12321nnnnSaaaaaa12321nnnnSaaaaaa
9、12.nnSn aa+得,所以1.2nnn aSa根据等差数列的定义1.nnaad追问5:对于等比数列,是否也能用倒序相加的方法进行求和呢?追问5:对于等比数列,是否也能用倒序相加的方法进行求和呢?12321nnnnSaaaaaa12321nnnnSaaaaaa追问5:对于等比数列,是否也能用倒序相加的方法进行求和呢?12321nnnnSaaaaaa12321nnnnSaaaaaa因为在等比数列中121nnaaaa追问5:对于等比数列,是否也能用倒序相加的方法进行求和呢?12321nnnnSaaaaaa12321nnnnSaaaaaa因为在等比数列中12.nnSn aa所以121nnaaaa追
10、问5:对于等比数列,是否也能用倒序相加的方法进行求和呢?12321nnnnSaaaaaa12321nnnnSaaaaaa因为在等比数列中121nnaaaa12.nnSn aa所以反思:反思:对于等比数列求和,不能照搬倒序相加的方法,而是要挖掘此方法的本质,即求和的根本目的.追问6:求和的根本目的是什么?追问6:求和的根本目的是什么?追问6:求和的根本目的是什么?利用公差追问6:求和的根本目的是什么?利用公差消除项与项之间的差异追问6:求和的根本目的是什么?利用公差消除项与项之间的差异消除中间项改进:为了看清式子的特点,我们不妨把各项都用首项和公比来表示.改进:为了看清式子的特点,我们不妨把各项
11、都用首项和公比来表示.2321111111.nnnnSaa qa qa qa qa q改进:为了看清式子的特点,我们不妨把各项都用首项和公比来表示.2321111111.nnnnSaa qa qa qa qa q追问7:观察 式,相邻两项有什么特征?怎样把某一项变成它的后一项?改进:为了看清式子的特点,我们不妨把各项都用首项和公比来表示.2321111111.nnnnSaa qa qa qa qa q追问7:观察 式,相邻两项有什么特征?怎样把某一项变成它的后一项?120nnaq nqa,改进:为了看清式子的特点,我们不妨把各项都用首项和公比来表示.2321111111.nnnnSaa qa
12、qa qa qa q追问7:观察 式,相邻两项有什么特征?怎样把某一项变成它的后一项?120nnaq nqa,120nnaaq nq,追问8:如何构造另一个式子,与原式相减后可以消除中间项?2321111111.nnnnSaa qa qa qa qa q追问8:如何构造另一个式子,与原式相减后可以消除中间项?2321111111.nnnnSaa qa qa qa qa q消除中间项追问8:如何构造另一个式子,与原式相减后可以消除中间项?2321111111.nnnnSaa qa qa qa qa q2321111nna qa qa qa q消除中间项追问8:如何构造另一个式子,与原式相减后可以
13、消除中间项?2321111111.nnnnSaa qa qa qa qa q2321111nna qa qa qa q消除中间项追问8:如何构造另一个式子,与原式相减后可以消除中间项?追问8:如何构造另一个式子,与原式相减后可以消除中间项?2321111111.nnnnSaa qa qa qa qa q2321111111.nnnnqSa qa qa qa qa qa q设等比数列 的首项为 ,公比为 ,则 的前 项和是 na1aq nan设等比数列 的首项为 ,公比为 ,则 的前 项和是 na1aq nan12321.nnnnSaaaaaa设等比数列 的首项为 ,公比为 ,则 的前 项和是
14、na1aq nan12321.nnnnSaaaaaa根据等比数列的通项公式,设等比数列 的首项为 ,公比为 ,则 的前 项和是 na1aq nan12321.nnnnSaaaaaa2321111111.nnnnSaa qa qa qa qa q根据等比数列的通项公式,设等比数列 的首项为 ,公比为 ,则 的前 项和是 na1aq nan12321.nnnnSaaaaaa2321111111.nnnnSaa qa qa qa qa q根据等比数列的通项公式,2321111111.nnnnqSa qa qa qa qa qa q设等比数列 的首项为 ,公比为 ,则 的前 项和是 na1aq nan
15、12321.nnnnSaaaaaa2321111111.nnnnSaa qa qa qa qa q根据等比数列的通项公式,2321111111.nnnnqSa qa qa qa qa qa q设等比数列 的首项为 ,公比为 ,则 的前 项和是 na1aq nan12321.nnnnSaaaaaa2321111111.nnnnSaa qa qa qa qa q根据等比数列的通项公式,2321111111.nnnnqSa qa qa qa qa qa q得,-设等比数列 的首项为 ,公比为 ,则 的前 项和是 na1aq nan12321.nnnnSaaaaaa2321111111.nnnnSaa
16、 qa qa qa qa q根据等比数列的通项公式,2321111111.nnnnqSa qa qa qa qa qa q得,11.nnnSqSaa q-设等比数列 的首项为 ,公比为 ,则 的前 项和是 na1aq nan12321.nnnnSaaaaaa2321111111.nnnnSaa qa qa qa qa q根据等比数列的通项公式,2321111111.nnnnqSa qa qa qa qa qa q得,11.nnnSqSaa q111.nnq Saq即-设等比数列 的首项为 ,公比为 ,则 的前 项和是 na1aq nan12321.nnnnSaaaaaa2321111111.n
17、nnnSaa qa qa qa qa q根据等比数列的通项公式,2321111111.nnnnqSa qa qa qa qa qa q-得,11.nnnSqSaa q111.nnq Saq即追问9:要求出 ,是否可以把上式两边同时除以?nS1 q111nnq Saq111nnq Saq当 时,即 时,10q1q 1.nSna111nnq Saq当 时,即 时,10q1q 111.1nnaqSqq当 时,即 时,10q1q 1.nSna111nnq Saq当 时,即 时,10q1q 111.1nnaqSqq当 时,即 时,10q1q 1.nSna11nnaa q111nnq Saq当 时,即 时
18、,10q1q 111.1nnaqSqq当 时,即 时,10q1q 1.nSna11nnaa q111nnaa qSqq方法提炼111111.11nnnnaqSaqaa qqqq,(1)等比数列的前 项和n(2)等比数列求和时,应考虑 与 两种情况.1q 1q 问题2的解决:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”问题2的解决:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里
19、放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”236312222问题2的解决:11,2,64,aqn“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”236312222问题2的解决:11,2,64,aqn64646411 2211 2S“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第6
20、4个格子.请给我足够的麦粒以实现上述要求.”236312222问题2的解决:11,2,64,aqn64646411 2211 2S“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”一千颗麦粒的质量约为40g,据查,2016-2017年度世界小麦产量约为7.5亿吨.191.84 10.236312222问题2的解决:11,2,64,aqn64646411 2211 2S“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里
21、放上4颗麦粒依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”一千颗麦粒的质量约为40g,据查,2016-2017年度世界小麦产量约为7.5亿吨.191.84 10.不能实现!236312222问题3 已知 是等比数列.na(1)若 求 ;111,22aq8S(2)若 求 ;19127,0,243aaq8S(3)若 求 .11318,22naqSn问题3 已知 是等比数列.na8S(1)若 求 ;111,22aq8S问题3 已知 是等比数列.na8S(1)若 求 ;111,22aq8S81811aqSq1881aa qSq问题3
22、 已知 是等比数列.na8S(1)若 求 ;111,22aq8S81811aqSq1881aa qSq1,a q问题3 已知 是等比数列.na8S(1)若 求 ;111,22aq8S81811aqSq1881aa qSq18,a a q1,a q问题3 已知 是等比数列.na8S(1)若 求 ;111,22aq8S81811aqSq1881aa qSq18,a a q1,a q问题3 已知 是等比数列.na(1)若 求 ;111,22aq8S因为111,22aq问题3 已知 是等比数列.na(1)若 求 ;111,22aq8S因为111,22aq所以8811122255.125612S问题3
23、已知 是等比数列.na8S(2)若 求 ;19127,0,243aaq8S问题3 已知 是等比数列.na8S1,a q(2)若 求 ;19127,0,243aaq8S问题3 已知 是等比数列.na8S1,a q1a9a(2)若 求 ;19127,0,243aaq8S问题3 已知 是等比数列.na8S1,a q1a9aq(2)若 求 ;19127,0,243aaq8S问题3 已知 是等比数列.na8S1,a q1a9aq(2)若 求 ;19127,0,243aaq8S问题3 已知 是等比数列.na(2)若 求 ;19127,0,243aaq8S由 ,19127,243aa问题3 已知 是等比数列
24、.na(2)若 求 ;19127,0,243aaq8S由 ,19127,243aa得 8127.243q问题3 已知 是等比数列.na(2)若 求 ;19127,0,243aaq8S由 ,19127,243aa得 8127.243q所以 881.3q问题3 已知 是等比数列.na(2)若 求 ;19127,0,243aaq8S由 ,19127,243aa得 8127.243q所以 881.3q又由 ,所以 0q 1.3q 所以88127131640.18113S 问题3 已知 是等比数列.na(2)若 求 ;19127,0,243aaq8S由 ,19127,243aa得 8127.243q所以
25、 881.3q又由 ,所以 0q 1.3q 问题3 已知 是等比数列.na(2)若 求 ;19127,0,243aaq8S追问1:能否直接用 求?11nnaa qSq8S问题3 已知 是等比数列.na8S18,a a q1,a q(2)若 求 ;19127,0,243aaq8S追问1:能否直接用 求?11nnaa qSq8S问题3 已知 是等比数列.na(2)若 求 ;19127,0,243aaq8S追问1:能否直接用 求?11nnaa qSq8S8S1,a q1a8a18,a a qq问题3 已知 是等比数列.na(2)若 求 ;19127,0,243aaq8S追问1:能否直接用 求?11n
26、naa qSq8S8S1,a q1a8a18,a a qq问题3 已知 是等比数列.na(2)若 求 ;19127,0,243aaq8S追问1:能否直接用 求?11nnaa qSq8S8S1,a q1a8a9aq18,a a qq问题3 已知 是等比数列.na8S1,a q1a8a(2)若 求 ;19127,0,243aaq8S追问1:能否直接用 求?11nnaa qSq8S9aq18,a a qq问题3 已知 是等比数列.nan(3)若 求 .11318,22naqSn问题3 已知 是等比数列.nan111nnaqSq11nnaa qSq(3)若 求 .11318,22naqSn问题3 已知
27、 是等比数列.nan111nnaqSq11nnaa qSq1aqnS(3)若 求 .11318,22naqSn问题3 已知 是等比数列.nan111nnaqSq11nnaa qSq1aqnS(3)若 求 .11318,22naqSn问题3 已知 是等比数列.na(3)若 求 .11318,22naqSn问题3 已知 是等比数列.na(3)若 求 .11318,22naqSn把 代入 ,11318,22naqS111nnaqSq人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】问题3 已知 是等比数列.na(3)若 求 .11318,22naqSn把 代入
28、,11318,22naqS111nnaqSq得181231.1212n人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】问题3 已知 是等比数列.na(3)若 求 .11318,22naqSn把 代入 ,11318,22naqS111nnaqSq得181231.1212n整理,得11.232n人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】问题3 已知 是等比数列.na(3)若 求 .11318,22naqSn把 代入 ,11318,22naqS111nnaqSq得181231.1212n整理,得11.232n解得5
29、.n 人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】追问2:对于等比数列的相关量 已知几个量就可以确定其他量?1,nna q n a S人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】追问2:对于等比数列的相关量 已知几个量就可以确定其他量?1,nna q n a S(1)若 求 ;111,22aq8S(2)若 求 ;19127,0,243aaq8S(3)若 求 .11318,22naqSn人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】1a追问2:对于等比数列的相关量 已
30、知几个量就可以确定其他量?1,nna q n a S(1)若 求 ;111,22aq8S(2)若 求 ;19127,0,243aaq8S(3)若 求 .11318,22naqSnqnannS人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】1a追问2:对于等比数列的相关量 已知几个量就可以确定其他量?1,nna q n a S(1)若 求 ;111,22aq8S(2)若 求 ;19127,0,243aaq8S(3)若 求 .11318,22naqSnqnannS12128人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件
31、】1a追问2:对于等比数列的相关量 已知几个量就可以确定其他量?1,nna q n a S(1)若 求 ;111,22aq8S(2)若 求 ;19127,203,4aaq 8S(3)若 求 .11318,22naqSnqnannS121282712439人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】1a追问2:对于等比数列的相关量 已知几个量就可以确定其他量?1,nna q n a S(1)若 求 ;111,22aq8S(2)若 求 ;19127,0,243aaq8S(3)若 求 .11318,22naqSnqnannS1212827124398123
32、12人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】1aqnannS121282712439812312追问2:对于等比数列的相关量 已知几个量就可以确定其他量?1,nna q n a S(1)若 求 ;111,22aq8S(2)若 求 ;19127,0,243aaq8S(3)若 求 .11318,22naqSn(方程思想)知三求二人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】课堂小结111111.11nnnnaqSaqaa qqqq,(1)等比数列的前 项和n(2)等比数列前 项和公式的推导方法:错位相减法.n(3)对于等比数列的相关量 五个量“知三求二”.1,nna q n a S人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】课后作业 na已知 是等比数列.(1)若 求 ;13,2,6aqnnS(2)若 求 ;1112.7,390naqa nS(4)若 求 与 .3339,22aS1a(3)若 求 与 ;141,64aa q4Sq人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】谢谢观看祝同学们学习愉快!人教版等比数列完美版推荐1【PPT教研课件】人教版等比数列完美版推荐1【PPT教研课件】