1、1第二章膜材料及表面改性第二章膜材料及表面改性l2.1.1纤维素衍生物类纤维素衍生物类l纤维素是资源最为丰富的天然高分子,由于纤维素的分子量很大,在分解温度前没有熔点,且不溶纤维素是资源最为丰富的天然高分子,由于纤维素的分子量很大,在分解温度前没有熔点,且不溶于通常的溶剂,无法加工成膜,必须进行化学改性后应用。于通常的溶剂,无法加工成膜,必须进行化学改性后应用。l(1)再生纤维素)再生纤维素l纤维素的相对分子质量在纤维素的相对分子质量在50万万200万,在溶解过程中降解,再生纤维素的相对分子质量约在几万万,在溶解过程中降解,再生纤维素的相对分子质量约在几万到几十万。传统的再生纤维素有铜氨纤维素
2、和黄原酸纤维素,它们是很好的透析膜膜材料。到几十万。传统的再生纤维素有铜氨纤维素和黄原酸纤维素,它们是很好的透析膜膜材料。l(2)硝酸纤维素)硝酸纤维素l硝酸纤维素常用溶剂为乙醚硝酸纤维素常用溶剂为乙醚/乙醇(乙醇(7:3)混合溶剂。硝酸纤维素价格便宜,广泛用在透析用膜和)混合溶剂。硝酸纤维素价格便宜,广泛用在透析用膜和微滤膜。微滤膜。l(3)醋酸纤维素()醋酸纤维素(CA)和三醋酸纤维素()和三醋酸纤维素(CTA)l醋酸纤维素由纤维素与乙酸酐乙酸混合物反应制备,以硫酸为催化剂。醋酸纤维素是制备不对称反醋酸纤维素由纤维素与乙酸酐乙酸混合物反应制备,以硫酸为催化剂。醋酸纤维素是制备不对称反渗透膜
3、的基本材料,三醋酸纤维素可制成中空纤维膜组件。渗透膜的基本材料,三醋酸纤维素可制成中空纤维膜组件。l2.1.2 聚砜类聚砜类l聚砜是一类耐高温强度工程塑料,具有优异的抗蠕变性能,故自双酚聚砜是一类耐高温强度工程塑料,具有优异的抗蠕变性能,故自双酚A型聚砜(型聚砜(PSf)出现后,即)出现后,即继醋酸纤维素之后发展成为目前最重要、生产量最大的合成膜材料,可用作制备微滤膜和超滤膜,继醋酸纤维素之后发展成为目前最重要、生产量最大的合成膜材料,可用作制备微滤膜和超滤膜,也可用作反渗透和气体分离膜的底膜。也可用作反渗透和气体分离膜的底膜。l(1)双酚型聚砜()双酚型聚砜(PSf)l由双酚由双酚A的二钾盐
4、与二氯二苯砜在二甲亚砜溶液中经亲核缩聚反应合成,聚砜的玻璃化转变温度为的二钾盐与二氯二苯砜在二甲亚砜溶液中经亲核缩聚反应合成,聚砜的玻璃化转变温度为190,其制成膜后可在,其制成膜后可在80 下长期使用,主要用于超滤和气体分离膜。下长期使用,主要用于超滤和气体分离膜。l(2)聚醚砜()聚醚砜(PES)l由双酚由双酚S的二钾盐与二氯二苯砜在环丁砜溶液中经亲核缩聚反应合成,聚醚砜的玻璃化转变温度为的二钾盐与二氯二苯砜在环丁砜溶液中经亲核缩聚反应合成,聚醚砜的玻璃化转变温度为235,是目前首选的可耐蒸汽杀菌的超滤、微滤膜材料。,是目前首选的可耐蒸汽杀菌的超滤、微滤膜材料。l2.1.3 聚酰胺类聚酰胺
5、类l(1)脂肪族聚酰胺)脂肪族聚酰胺l代表产品有尼龙代表产品有尼龙6和尼龙和尼龙66。尼龙。尼龙6是由己内酰胺在高温下开环聚合而得。尼龙是由己内酰胺在高温下开环聚合而得。尼龙66由己二胺和己二由己二胺和己二酸缩聚制得。尼龙酸缩聚制得。尼龙6和尼龙和尼龙66的织布和不织布(无纺布)主要用于反渗透膜和气体分离膜的支撑底的织布和不织布(无纺布)主要用于反渗透膜和气体分离膜的支撑底布。布。l(2)芳香族聚酰胺)芳香族聚酰胺l芳香族聚酰胺是第二代反渗透膜用材料,只溶于硫酸,故一般不用溶液制膜,而用熔融纺丝制备中芳香族聚酰胺是第二代反渗透膜用材料,只溶于硫酸,故一般不用溶液制膜,而用熔融纺丝制备中空纤维膜
6、,主要用于反渗透。空纤维膜,主要用于反渗透。l(3)聚酰亚胺)聚酰亚胺l聚酰亚胺是一类耐高温、耐溶剂、耐化学品的高强度、高性能材料。聚酰亚胺在气体分离方面表现聚酰亚胺是一类耐高温、耐溶剂、耐化学品的高强度、高性能材料。聚酰亚胺在气体分离方面表现出较高的选择透过性,尤其是在其结构中引入六氟异亚丙基基团。在酰亚胺氮的位置引入甲基、异出较高的选择透过性,尤其是在其结构中引入六氟异亚丙基基团。在酰亚胺氮的位置引入甲基、异丙基或卤素基团,有利于增加聚合物的自由体积,导致气体透过系数增加丙基或卤素基团,有利于增加聚合物的自由体积,导致气体透过系数增加12个数量级。个数量级。l织布:经纱和纬纱相互交错或彼此
7、浮沉的规律织布:经纱和纬纱相互交错或彼此浮沉的规律l不织布:又称无纺布,是由定向的或随机的纤维而构成,是新一代环保材料。不织布:又称无纺布,是由定向的或随机的纤维而构成,是新一代环保材料。l2.1.4 聚烯烃类聚烯烃类l(1)聚乙烯)聚乙烯l低密度聚乙烯:由乙烯在高压下经自由基聚合而得,由于聚合时加入少量低密度聚乙烯:由乙烯在高压下经自由基聚合而得,由于聚合时加入少量CO,故在分子链中有共,故在分子链中有共聚的聚的CO存在,因此低密度聚乙烯具有高度支化结构,并不是线性聚合物。低密度聚乙烯在拉伸存在,因此低密度聚乙烯具有高度支化结构,并不是线性聚合物。低密度聚乙烯在拉伸时产生狭缝状微孔,可用来制
8、成微滤膜。低密度聚乙烯熔融纺出的纤维可以压成无纺布,用于超滤时产生狭缝状微孔,可用来制成微滤膜。低密度聚乙烯熔融纺出的纤维可以压成无纺布,用于超滤膜等的低档支撑材料。膜等的低档支撑材料。l高密度聚乙烯:由乙烯在常压高密度聚乙烯:由乙烯在常压Ziegler催化剂(三乙基铝与四氯化钛)作用下经配位聚合而得,基催化剂(三乙基铝与四氯化钛)作用下经配位聚合而得,基本上属于线性结构,其力学性能优于低密度聚乙烯。高密度聚乙烯产品为粉末状颗粒,经筛分压成本上属于线性结构,其力学性能优于低密度聚乙烯。高密度聚乙烯产品为粉末状颗粒,经筛分压成管状或板状,在接近熔点烧结可得到不同孔径规格的微滤用滤板和滤芯,也可用
9、作分离膜的制成材管状或板状,在接近熔点烧结可得到不同孔径规格的微滤用滤板和滤芯,也可用作分离膜的制成材料。料。l(2)聚丙烯)聚丙烯l由丙烯以由丙烯以Ziegler催化剂聚合而得。聚丙烯网是常用的间隔层材料,用于卷式催化剂聚合而得。聚丙烯网是常用的间隔层材料,用于卷式RO组件和卷式气体分组件和卷式气体分离组件。聚丙烯和聚乙烯一样,可经过熔融拉伸制成微孔滤膜,孔的形状为狭缝状。除用于微滤外,离组件。聚丙烯和聚乙烯一样,可经过熔融拉伸制成微孔滤膜,孔的形状为狭缝状。除用于微滤外,也可作为复合气体分离膜的底膜,其组件可用于人工肺(膜式氧合器)。也可作为复合气体分离膜的底膜,其组件可用于人工肺(膜式氧
10、合器)。l2.1.5 乙烯类聚合物乙烯类聚合物l乙烯类聚合物是一大类聚合型高分子材料,如聚丙烯腈、聚乙烯醇、聚氯乙烯等。乙烯类聚合物是一大类聚合型高分子材料,如聚丙烯腈、聚乙烯醇、聚氯乙烯等。l(1)聚丙烯腈()聚丙烯腈(PAN)l单体丙烯腈多从丙烯胺氧化制得,聚合反应可在溶剂中以单体丙烯腈多从丙烯胺氧化制得,聚合反应可在溶剂中以AIBN(偶氮二异丁腈)为引发剂或氧化(偶氮二异丁腈)为引发剂或氧化还原体系催化剂聚合直接得到聚丙烯腈溶液。聚丙烯腈的重要性仅次于醋酸纤维素和聚砜材料,得还原体系催化剂聚合直接得到聚丙烯腈溶液。聚丙烯腈的重要性仅次于醋酸纤维素和聚砜材料,得到广泛的应用,尤其是作渗透汽
11、化复合膜的底膜。到广泛的应用,尤其是作渗透汽化复合膜的底膜。l(2)聚乙烯醇()聚乙烯醇(PVA)l聚乙烯醇是由聚乙酸乙烯酯水解得到,为水溶性的聚合物。以二元酸等交联的聚乙烯醇是目前唯一聚乙烯醇是由聚乙酸乙烯酯水解得到,为水溶性的聚合物。以二元酸等交联的聚乙烯醇是目前唯一获得实用的渗透汽化膜,它和聚乙烯醇底膜的复合膜牢固的占据着用于醇类脱水的渗透汽化膜市场。获得实用的渗透汽化膜,它和聚乙烯醇底膜的复合膜牢固的占据着用于醇类脱水的渗透汽化膜市场。l(3)聚氯乙烯()聚氯乙烯(PVC)l聚氯乙烯属于大品种通用塑料,由氯乙烯经自由基引发制备。聚氯乙烯多孔膜是低档的微滤材料。聚氯乙烯属于大品种通用塑料
12、,由氯乙烯经自由基引发制备。聚氯乙烯多孔膜是低档的微滤材料。l2.1.6 含氟聚合物含氟聚合物l(1)聚四氟乙烯()聚四氟乙烯(PTFE)l由四氟乙烯(由四氟乙烯(CF2=CF2)在在50 加压下自由基悬浮聚合。聚四氟乙烯以化学惰性和耐溶剂性著称,加压下自由基悬浮聚合。聚四氟乙烯以化学惰性和耐溶剂性著称,俗称塑料王。由于其表面张力极低,憎水性很强,用拉伸制孔法制得的俗称塑料王。由于其表面张力极低,憎水性很强,用拉伸制孔法制得的PTFE微滤膜不易被堵塞,微滤膜不易被堵塞,且极易清洗,在食品、医药、生物制品等行业应用很广。且极易清洗,在食品、医药、生物制品等行业应用很广。l(2)聚偏氟乙烯()聚偏
13、氟乙烯(PVDF)l由单体偏氟乙烯(由单体偏氟乙烯(CH2=CF2)经悬浮聚合或乳液聚合而得。经悬浮聚合或乳液聚合而得。PVDF可溶于非质子极性溶剂制备不对可溶于非质子极性溶剂制备不对称微滤膜和超滤膜。聚偏氟乙烯材料化学稳定性好,耐称微滤膜和超滤膜。聚偏氟乙烯材料化学稳定性好,耐-射线和紫外线老化,机械强度高,耐热性射线和紫外线老化,机械强度高,耐热性好,目前在工业中广泛应用。另外好,目前在工业中广泛应用。另外PVDF也是用于膜蒸馏和膜吸收等杂化膜过程的理想材料。也是用于膜蒸馏和膜吸收等杂化膜过程的理想材料。l2.1.7无机和金属类无机和金属类l无机和金属材料包括金属、金属氧化物、陶瓷、多孔玻
14、璃、沸石、无机高分子材料,与聚合物分离无机和金属材料包括金属、金属氧化物、陶瓷、多孔玻璃、沸石、无机高分子材料,与聚合物分离膜相比具有如下优点:膜相比具有如下优点:l(1)化学稳定性好,能耐酸、耐碱、耐有机溶剂;)化学稳定性好,能耐酸、耐碱、耐有机溶剂;l(2)机械强度大,承载无机膜或金属膜可承受几十个大气压的外压,并可反向冲洗;)机械强度大,承载无机膜或金属膜可承受几十个大气压的外压,并可反向冲洗;l(3)抗微生物能力强,不与微生物发生作用,可以在生物工程及医学科学领域中应用;)抗微生物能力强,不与微生物发生作用,可以在生物工程及医学科学领域中应用;l(4)耐高温,一般均可以在)耐高温,一般
15、均可以在400下操作,最高可达下操作,最高可达800。l不足之处在于造价较高,并且无机材料脆性大,弹性小,给膜的成型加工及组件装备带来一定的困不足之处在于造价较高,并且无机材料脆性大,弹性小,给膜的成型加工及组件装备带来一定的困难。难。l膜分离技术具有设备简单,操作方便,无相变,无化学变化,处理效率高和节能等优点,作为一种膜分离技术具有设备简单,操作方便,无相变,无化学变化,处理效率高和节能等优点,作为一种单元操作日益受到重视,已在海水淡化、电子工业、食品工业、医药工业、环境保护和工程领域得单元操作日益受到重视,已在海水淡化、电子工业、食品工业、医药工业、环境保护和工程领域得到广泛的应用。然而
16、,随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的到广泛的应用。然而,随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。2.2高分子膜材料表面改性高分子膜材料表面改性l目前使用的大多数膜的材料是聚丙烯(目前使用的大多数膜的材料是聚丙烯(PPPP)、聚乙烯,聚偏氟乙烯、醋酸纤维素、聚砜、聚醚讽和)、聚乙烯,聚偏氟乙烯、醋酸纤维素、聚砜、聚醚讽和聚氯乙烯等。当这些膜与欲分离的物质相接触时,在膜表面和孔内的污染物聚集,使得膜通量随运聚氯乙烯等。当这些膜与欲分离的物
17、质相接触时,在膜表面和孔内的污染物聚集,使得膜通量随运行时间的延长而下将,特别是当聚合物膜材料用于生物医药领域中(如血液透析)时,在膜表面吸行时间的延长而下将,特别是当聚合物膜材料用于生物医药领域中(如血液透析)时,在膜表面吸附的蛋白质加速纤维性和抗生素碎片在膜表面的聚集(血液相容性),导致一系列的生物反应,例附的蛋白质加速纤维性和抗生素碎片在膜表面的聚集(血液相容性),导致一系列的生物反应,例如形成血栓及免疫反应。因此,为了拓展分离膜的应用,通常需要对膜材料进行改性或改变膜表面如形成血栓及免疫反应。因此,为了拓展分离膜的应用,通常需要对膜材料进行改性或改变膜表面的物理化学性能,赋予传统分离膜
18、更多功能,增大膜的透水性,提高膜的抗污染性,改善膜的生物的物理化学性能,赋予传统分离膜更多功能,增大膜的透水性,提高膜的抗污染性,改善膜的生物相容性。对膜材料的改性的方法有物理改性和化学改性。相容性。对膜材料的改性的方法有物理改性和化学改性。l2.2.1表面物理改性表面物理改性l2.2.1.1表面涂覆改性表面涂覆改性l 以分离膜为支撑层,将具有一定功能基团的功能高分子涂覆在支撑层表面而达到改性的目的,功能以分离膜为支撑层,将具有一定功能基团的功能高分子涂覆在支撑层表面而达到改性的目的,功能高分子可以是有机物或无机物。但膜表面涂覆方法的改性效果并不十分理想,存在的最大问题是功能高分子可以是有机物
19、或无机物。但膜表面涂覆方法的改性效果并不十分理想,存在的最大问题是功能高分子易从分离膜表面脱离,不能得到永久的改性效果。但这种方法显示了制备一系列具有不同截留高分子易从分离膜表面脱离,不能得到永久的改性效果。但这种方法显示了制备一系列具有不同截留率分离膜的可能性。率分离膜的可能性。2.2.1.2表面吸附改性表面吸附改性 l 小分子通过物理吸附附着在聚合物膜上,这也是一类制备聚合物膜的方法。例如带有亲水基团(小分子通过物理吸附附着在聚合物膜上,这也是一类制备聚合物膜的方法。例如带有亲水基团(-OHOH)在膜表面的吸附使膜表面形成一层亲水层,从而在增大膜的初始通量的同时又能降低使用过程中)在膜表面
20、的吸附使膜表面形成一层亲水层,从而在增大膜的初始通量的同时又能降低使用过程中通量衰减和蛋白质的吸附。通量衰减和蛋白质的吸附。l l 小结:通过物理方法对膜材料进行表面改性,简单易行,但存在改性后材料性能不均一,随运行时小结:通过物理方法对膜材料进行表面改性,简单易行,但存在改性后材料性能不均一,随运行时间的延长,改性效果逐渐丧失。间的延长,改性效果逐渐丧失。2.2.2 膜材料的物理改性膜材料的物理改性2.2.2.1 高分子材料与高分子材料的共混改性高分子材料与高分子材料的共混改性 l高分子材料的共混是指两种以上高分子混合,形成一种新材料,它除了综合原有材料本身性能外,高分子材料的共混是指两种以
21、上高分子混合,形成一种新材料,它除了综合原有材料本身性能外,还可克服原有材料中的各自缺陷,并产生原有材料中所没有的优异性能。高分子共混改性膜主要从还可克服原有材料中的各自缺陷,并产生原有材料中所没有的优异性能。高分子共混改性膜主要从以下三个方面改善膜的性能:以下三个方面改善膜的性能:l1 1、改善膜的亲水性能及聚合物的成膜性;、改善膜的亲水性能及聚合物的成膜性;l2 2、改善膜的耐污染性;、改善膜的耐污染性;l3 3、提高膜的物化稳定性、提高膜的物化稳定性 (提高膜的耐蚀性、耐热性和机械强度提高膜的耐蚀性、耐热性和机械强度)。l带有极性基团的分子,对水有大的亲和能力,可以吸引水分子或溶解于水。
22、这类分子形成的固体材带有极性基团的分子,对水有大的亲和能力,可以吸引水分子或溶解于水。这类分子形成的固体材料的表面,易被水所润湿。具有这种特性都是物质的亲水性。料的表面,易被水所润湿。具有这种特性都是物质的亲水性。MembraneSPES content(%)Water contactJw(L/m2h)bJb(L/m2h)bBSA rejection(%)PES065156.4 63.499.8PES/SPES558160.2 65.199.6PES/SPES1554182.672.699.9PES/SPES3049216.586.999.7Jw:water flux;Jb:BSA solut
23、ion flux磺化聚醚砜(磺化聚醚砜(SPESSPES)是聚醚砜(是聚醚砜(PESPES)经磺化处理而生成的亲水性材料经磺化处理而生成的亲水性材料,这种材料与这种材料与PES PES 共共混混,材料性质相似材料性质相似,相容性好相容性好,对膜结构的影响也小。但由于增强了膜的亲水性对膜结构的影响也小。但由于增强了膜的亲水性,膜的渗透性提膜的渗透性提高高,随膜中随膜中SPES SPES 含量的增加含量的增加,水通量增大。水通量增大。疏水性材料:聚砜、聚醚砜、聚偏氟乙烯、聚乙烯、聚丙烯疏水性材料:聚砜、聚醚砜、聚偏氟乙烯、聚乙烯、聚丙烯亲水性材料:磺化聚醚砜、聚乙烯醇、纤维素类亲水性材料:磺化聚醚
24、砜、聚乙烯醇、纤维素类2.2.2.2高分子材料与无机材料的共混改性高分子材料与无机材料的共混改性 l 有机高分子具有弹性高、韧性好,分离性能优良等优点,但存在透气率低、抗腐蚀性差及不耐高有机高分子具有弹性高、韧性好,分离性能优良等优点,但存在透气率低、抗腐蚀性差及不耐高温等弱点。无机膜,尤其是陶瓷膜,则有许多独特的物理、化学性能,尤其在涉及高温以及有腐蚀性温等弱点。无机膜,尤其是陶瓷膜,则有许多独特的物理、化学性能,尤其在涉及高温以及有腐蚀性环境的分离过程中,有着高聚物膜材料所无可比拟的优势,但因受扩散限制,分离性能很差。在膜材环境的分离过程中,有着高聚物膜材料所无可比拟的优势,但因受扩散限制
25、,分离性能很差。在膜材料的研究过程中人们发现,将两种材料有效地结合在一起,得到一种新型的有机料的研究过程中人们发现,将两种材料有效地结合在一起,得到一种新型的有机/无机复合材料,可以无机复合材料,可以同时得到既具有优良的分离性能又能耐受较苛刻的环境条件的新型的超滤膜(合金膜)。同时得到既具有优良的分离性能又能耐受较苛刻的环境条件的新型的超滤膜(合金膜)。l 高分子材料的合金化用于调节膜的亲水性及膜性能的方法简单、经济,膜材料的选择范围广高分子材料的合金化用于调节膜的亲水性及膜性能的方法简单、经济,膜材料的选择范围广,可调可调节的参数多,膜性能改善的幅度大节的参数多,膜性能改善的幅度大,为膜材料
26、的开发及膜性能的进一步完善开辟了一条新路为膜材料的开发及膜性能的进一步完善开辟了一条新路,有着广阔的有着广阔的发展前景。发展前景。2.2.3 化学改性化学改性 2.2.3.1 膜表面化学改性膜表面化学改性l 与膜表面物理改性相比,膜表面化学改性使得功能基团以化学键与膜表面键合,从而不会在物质与膜表面物理改性相比,膜表面化学改性使得功能基团以化学键与膜表面键合,从而不会在物质透过膜时被稀释,不会引起功能基团得流失。另外,接枝反应发生在聚合物表面,不会影响聚合物的透过膜时被稀释,不会引起功能基团得流失。另外,接枝反应发生在聚合物表面,不会影响聚合物的内部结构。这样不仅可以赋予聚合物膜新的性质,而且
27、不会降低原聚合物膜的力学性能。接枝改性可内部结构。这样不仅可以赋予聚合物膜新的性质,而且不会降低原聚合物膜的力学性能。接枝改性可以通过几种方法来实现,如紫外辐照、以通过几种方法来实现,如紫外辐照、射线辐照接枝聚合、等离子体表面聚合改性、界面缩聚等方射线辐照接枝聚合、等离子体表面聚合改性、界面缩聚等方法。法。一、等离子体改性一、等离子体改性 等离子体是气体在电场作用下,部分气体分子发生电离,生成共存的电子及正离子、激发态分子及等离子体是气体在电场作用下,部分气体分子发生电离,生成共存的电子及正离子、激发态分子及自由基,气体整体呈电中性,这就是物质存在的第自由基,气体整体呈电中性,这就是物质存在的
28、第4 4 种状态种状态-等离子状态。等离子体中所富集的这些活等离子状态。等离子体中所富集的这些活性离子具有较高的能量,能激活物质分子,发生物理或化学变化。用等离子体对超滤膜进行表面处理性离子具有较高的能量,能激活物质分子,发生物理或化学变化。用等离子体对超滤膜进行表面处理具有简单、快速、改性仅涉及表面而不影响本体结构和性能等优点,对改善高分子材料的亲水性、染具有简单、快速、改性仅涉及表面而不影响本体结构和性能等优点,对改善高分子材料的亲水性、染色性、渗透性、电镀性、粘合性等方面具有广泛的应用前景。色性、渗透性、电镀性、粘合性等方面具有广泛的应用前景。二、光化学接枝二、光化学接枝 光化学接枝也称
29、光接枝光化学接枝也称光接枝,始于始于1957 1957 年。近十几年来年。近十几年来,分离膜的光接枝改性和功能化成为研究热点。分离膜的光接枝改性和功能化成为研究热点。光接枝通常采用的是紫外光光接枝通常采用的是紫外光,接枝聚合的首要条件是生成表面引发中心接枝聚合的首要条件是生成表面引发中心表面自由基。依据表面自由基表面自由基。依据表面自由基产生方式的不同产生方式的不同,光接枝过程可以分为以下四类:聚合物辐照分解法、自由基链转移法、氢提取反应法、光接枝过程可以分为以下四类:聚合物辐照分解法、自由基链转移法、氢提取反应法、光生过氧基热裂解法。光生过氧基热裂解法。三、化学接枝法三、化学接枝法 化学接枝
30、即采用化学试剂引发接枝聚合反应。可以先制得接枝型的膜材料化学接枝即采用化学试剂引发接枝聚合反应。可以先制得接枝型的膜材料,然后制膜然后制膜,也可以直接也可以直接在成品膜表面进行接枝反应。常用的引发剂为自由基型引发剂在成品膜表面进行接枝反应。常用的引发剂为自由基型引发剂,如如:过氧化类和过硫酸盐等。过氧化类和过硫酸盐等。四、辐射接枝四、辐射接枝 通过高能辐射线引发单体聚合,称为辐射聚合。辐射线可分为通过高能辐射线引发单体聚合,称为辐射聚合。辐射线可分为-射线、射线、X-X-射线、射线、-射线、射线、-射射线及中子射线。其中线及中子射线。其中-射线的能量最高。射线的能量最高。60Co-60Co-射
31、线穿透力强,反应均匀,而且操作容易,应用最射线穿透力强,反应均匀,而且操作容易,应用最广。主要是利用高能广。主要是利用高能 射线促使材料表面产生自由基,引发单体接枝聚合,把某些性能的基团或聚合射线促使材料表面产生自由基,引发单体接枝聚合,把某些性能的基团或聚合物支链接到膜材料的高分子链上致使高分子膜的内部结构或表面性能发生变化,从而达到聚合物膜改物支链接到膜材料的高分子链上致使高分子膜的内部结构或表面性能发生变化,从而达到聚合物膜改性的目的。陆晓峰等对聚偏氟乙烯性的目的。陆晓峰等对聚偏氟乙烯 (PVDF)(PVDF)超滤膜进行了辐照接枝改性。在膜表面先通过超滤膜进行了辐照接枝改性。在膜表面先通
32、过60Co-60Co-射射线辐照,然后接枝乙烯基单体,再进行磺化,使线辐照,然后接枝乙烯基单体,再进行磺化,使PVDF PVDF 膜成为具有磺酸基团的超滤膜。实验结果表明,膜成为具有磺酸基团的超滤膜。实验结果表明,改性后的改性后的PVDF PVDF 超滤膜的截留率提高,污染度下降,亲水性增强。超滤膜的截留率提高,污染度下降,亲水性增强。2.2.3.2膜材料化学改性膜材料化学改性l 膜材料化学改性包括材料的共聚、接枝、用化学方法赋予亲水基团等。其中共聚改性如分别将聚膜材料化学改性包括材料的共聚、接枝、用化学方法赋予亲水基团等。其中共聚改性如分别将聚乙烯吡咯烷酮与聚醚砜、聚砜共聚以改善聚醚砜、聚砜
33、膜的亲水性。接枝也是较为常用的一种膜材料乙烯吡咯烷酮与聚醚砜、聚砜共聚以改善聚醚砜、聚砜膜的亲水性。接枝也是较为常用的一种膜材料改性方法改性方法,如在如在PVDF PVDF 分子上接枝丙烯酸、丙烯酰胺等。化学改性的方法有在原有膜材料的分子上引入分子上接枝丙烯酸、丙烯酰胺等。化学改性的方法有在原有膜材料的分子上引入其它官能团其它官能团,以提高了材料的特定性质以提高了材料的特定性质;PVC;PVC 分子上引入分子上引入-CN-CN、-COOH;-COOH;在在PSF PSF 分子引入分子引入-SO-SO3 3H H、-COOH-COOH等基团等基团;在氧化剂存在下用强碱处理在氧化剂存在下用强碱处理
34、PVDF PVDF 引入亲水基团引入亲水基团;改变改变CACA分子上的乙酰基取代度或引入分子上的乙酰基取代度或引入-CN-CN基团基团;调节聚酰胺分子中亲水性的酰胺基团的比例等。以上方法都不同程度地改变了膜材料的亲水性。调节聚酰胺分子中亲水性的酰胺基团的比例等。以上方法都不同程度地改变了膜材料的亲水性。小结:随着膜技术的广泛应用和发展,高聚物作为主要的膜材料,其性能的研究已成为人们关注的热小结:随着膜技术的广泛应用和发展,高聚物作为主要的膜材料,其性能的研究已成为人们关注的热点。开发研制新材料的同时,必将出现更多的膜改性方法。相比较而言,膜表面改性只是在一定程度点。开发研制新材料的同时,必将出
35、现更多的膜改性方法。相比较而言,膜表面改性只是在一定程度上改了膜表面的孔径、孔径分布及亲水性,其改性过程中存在一些不确定因素,特别是经过表面物理上改了膜表面的孔径、孔径分布及亲水性,其改性过程中存在一些不确定因素,特别是经过表面物理改性膜在使用过程中常常存在吸附、涂敷层脱落的现象,使膜的性能显著下降。而膜材料改性则可避改性膜在使用过程中常常存在吸附、涂敷层脱落的现象,使膜的性能显著下降。而膜材料改性则可避免这不利因素,并且改性效果持久稳定。在膜材料改性中,共混改性以其操作简便、效果好而受到青免这不利因素,并且改性效果持久稳定。在膜材料改性中,共混改性以其操作简便、效果好而受到青睐。其是有机睐。其是有机/无机膜材料的共混,可以综合有机、无机膜的优点,使膜的性能进一步改善,以满足特无机膜材料的共混,可以综合有机、无机膜的优点,使膜的性能进一步改善,以满足特定的离过程。定的离过程。21