131空间几何体的表面积与体积解析课件.ppt

上传人(卖家):晟晟文业 文档编号:5099514 上传时间:2023-02-11 格式:PPT 页数:54 大小:1.38MB
下载 相关 举报
131空间几何体的表面积与体积解析课件.ppt_第1页
第1页 / 共54页
131空间几何体的表面积与体积解析课件.ppt_第2页
第2页 / 共54页
131空间几何体的表面积与体积解析课件.ppt_第3页
第3页 / 共54页
131空间几何体的表面积与体积解析课件.ppt_第4页
第4页 / 共54页
131空间几何体的表面积与体积解析课件.ppt_第5页
第5页 / 共54页
点击查看更多>>
资源描述

1、柱体柱体锥体锥体台体台体球球多面体多面体旋转体旋转体一、柱体、锥体、台体的表面积一、柱体、锥体、台体的表面积什么是面积?ahS21bahbhaSAabsin面积面积:平面图形所占平面的大小平面图形所占平面的大小 S=ababABacsin21ahBChbaS)(21abh2rSrlS212360rnabArl圆心角为n0rc复习回顾复习回顾表面积、全面积和侧面积 表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)全面积全面积是立体几何里的概念,相对于截面积(“截面积”即切面的面积)来说的,就是表面积总和 侧面积指立体图形的各个侧面的面积之和(除去底面)2、分别作出一个圆

2、柱、圆锥、圆台,并找出旋转轴、分别作出一个圆柱、圆锥、圆台,并找出旋转轴分别经过旋转轴作一个平面,观察得到的轴截面是分别经过旋转轴作一个平面,观察得到的轴截面是 什么形状的图形什么形状的图形.ABCDABCABCD 怎么样得到正方体和长方体的表面积怎么样得到正方体和长方体的表面积?几何体表面积几何体表面积展开图展开图平面图形面积平面图形面积空间问题空间问题平面问题平面问题aabcaS6)(2bcabacS把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?chhcbaS )(直棱拄侧直棱拄侧habcabchh底侧表面积SSS2正棱锥的侧面展开图是什么?正棱锥的侧面展开图是什么?侧面展开正

3、棱锥的正棱锥的侧面积侧面积如何计如何计算?算?表面积表面积如何计算?如何计算?21chS正棱锥侧正棱锥侧 正棱台的正棱台的侧面展开图侧面展开图是什么?是什么?侧面展开侧面展开hh正棱台的正棱台的侧面积侧面积如何计算?如何计算?表面积表面积如何计算?如何计算?)21hccS(正棱台侧正棱台侧h一般地一般地,多面体的表面积就是各个面的面积之和多面体的表面积就是各个面的面积之和表面积表面积=侧面积侧面积+底面积底面积小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式)cc21hS(正正棱棱台台C=021chS三三棱棱锥锥C=CchchS 直直棱棱柱柱 例例1 已知棱长为已知棱长为

4、a,各面均为等边三角形的四面,各面均为等边三角形的四面体体S-ABC,求它的表面积,求它的表面积 DBCASaaaBDSBSD2322222所以:所以:243232121aaaSDBCSSBC因此,四面体因此,四面体S-ABC 的表面积的表面积交交BC于点于点D解:先求解:先求 的面积,过点的面积,过点S作作SBCBCSD 223434aaS因为因为aBC 222)31(3aaaS 练习:已知棱长为a,底面为正方形,各侧面均为等边三角形的四棱锥S-ABCD,求它的表面积.解:四棱锥的底面积为a2,每个侧面都是边长为a的正三角形,所以棱锥的侧面积为 所以这个四棱锥的 表面积为2323214aaa

5、S侧例1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为 _;答:60例2:正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积79答:例1:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形ABCC1A1B1O1ODD1E思考)(2222lrrrlrS圆柱表面积rlr2lrS2侧2rS底)(2lrrrlrS圆锥表面积r2lOr侧面展开图是一个扇形rllrS221侧)(22rll rrrSr2lOrO r2 rlrrrrS222122侧面展开图是一个扇状环形lrrS)(侧l

6、OrO rlOrlOOr)(2lrrS柱)(lrrS?)(22rllrrrS?rr上底扩大上底扩大r0上底缩小上底缩小圆柱、圆锥、圆台三者的表面积公式之间有什么关系?圆柱、圆锥、圆台三者的表面积公式之间有什么关系?例例2 2 如图,一个圆台形花盆盆口直径如图,一个圆台形花盆盆口直径20 cm20 cm,盆,盆底直径为底直径为15cm15cm,底部渗水圆孔直径为,底部渗水圆孔直径为1.5 cm1.5 cm,盆壁长,盆壁长15cm15cm那么花盆的表面积约是多少平方厘米(那么花盆的表面积约是多少平方厘米(取取3.143.14,结果精确到,结果精确到1 1 )?)?2cmcm15cm20cm15 解

7、:由圆台的表面积公式得解:由圆台的表面积公式得 花盆的表面积:花盆的表面积:2225.11522015215215S)(9992cm答:花盆的表面积约是答:花盆的表面积约是999 999 2cm)(22rllrrrS圆台表面积各面面积之和各面面积之和rr0 r展开图展开图22()Srrr lrl 圆台圆台圆柱圆柱)(2lrrS)(lrrS圆锥圆锥空间问题转化成平面问题空间问题转化成平面问题棱柱、棱锥、棱柱、棱锥、棱台棱台圆柱、圆锥、圆柱、圆锥、圆台圆台所用的数学思想:所用的数学思想:柱体、锥体、台体的表面积柱体、锥体、台体的表面积二、柱体、锥体、台体的体积二、柱体、锥体、台体的体积体积体积:几

8、何体所占空间的大小几何体所占空间的大小 长方体体积:长方体体积:正方体体积:正方体体积:圆柱的体积:圆柱的体积:Vabh3Va2Vr hVShabhaaah底面积底面积高高aa 2 以前学过特殊的棱柱以前学过特殊的棱柱正方体、长方体以及圆柱正方体、长方体以及圆柱的体积公式的体积公式,它们的体积公式可以统一为:它们的体积公式可以统一为:柱体(棱柱、圆柱)柱体(棱柱、圆柱)的体积公式:的体积公式:ShV(其中(其中S为底面面积,为底面面积,h为柱体的高)为柱体的高)VSh作直三棱柱、正三棱锥、正三棱台各一个,找作直三棱柱、正三棱锥、正三棱台各一个,找出出斜高斜高CBAA1B1C1COBAPDC1D

9、1A1ODBACB1斜高的概念三三:锥体体积锥体体积例例2 2:如图:三棱柱如图:三棱柱ADAD1 1C C1 1-BDC,-BDC,底面积为底面积为S S,高为高为h h.ABD C D1C1CDA BCD1ADCC1D1A答答:可分成可分成棱锥棱锥A-D1DC,棱锥棱锥A-D1C1C,棱锥棱锥A-BCD.问:(问:(1 1)从)从A A点出发棱柱能点出发棱柱能分割分割成几个三棱锥?成几个三棱锥?3.13.1锥体(棱锥、圆锥)的体积锥体(棱锥、圆锥)的体积 (底面积(底面积S,高高h)注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题问题:锥

10、体锥体(棱锥、圆锥)棱锥、圆锥)的体积的体积shV31三棱锥定理如果一个锥体(棱锥、圆锥)的底面定理如果一个锥体(棱锥、圆锥)的底面 积是,高是,那么它的体积是:积是,高是,那么它的体积是:推论:如果圆锥的底面半径是推论:如果圆锥的底面半径是,高是,高是,那么它的体积是:那么它的体积是:hSS锥体锥体 3131圆锥圆锥 Shss/ss/hx四四.台体的体积台体的体积V V台体台体=1 1h(s+ss+s)h(s+ss+s)3 3上下底面积分别是上下底面积分别是s/,s,高是高是h,则,则VVV大 锥小 锥1133113313S hShSSSSShSSS hh SSSSS hxSS11=33S

11、xhS x 11 =33ShSSx2xSxhSxSxhSS hxSSSShx台体(棱台、圆台)的体积公式台体(棱台、圆台)的体积公式hSSSSV)(31 ,S Sh其中,分别为上、下底面面积,为圆台(棱台)的高柱体、锥体、台体的体积公式之间有什么关系?柱体、锥体、台体的体积公式之间有什么关系?hSSSSV)(31S为底面面积,为底面面积,h为柱体高为柱体高ShV SS 分别为上、下分别为上、下底面面积,底面面积,h 为台体为台体高高ShV310SS为底面面积,为底面面积,h为锥体高为锥体高上底扩大上底扩大上底缩小上底缩小,SS21.,a m已知圆锥的表面积且它的侧面展开图是一个半圆,求这个圆锥

12、的底面直径。例例2 2 如图,一个圆台形花盆盆口直径如图,一个圆台形花盆盆口直径20 cm20 cm,盆底直径为盆底直径为15cm15cm,底部渗水圆孔直径为,底部渗水圆孔直径为1.5 1.5 cmcm,盆壁长,盆壁长15cm15cm那么花盆的表面积约是多那么花盆的表面积约是多少平方厘米?少平方厘米?cm15cm20cm15 例例3 有一堆规格相同的铁制(铁的密度是有一堆规格相同的铁制(铁的密度是 )六角螺帽共重)六角螺帽共重5.8kg,已知底面是正六边,已知底面是正六边形,边长为形,边长为12mm,内孔直径为,内孔直径为10mm,高为,高为10mm,问这堆螺帽大约有多少个(问这堆螺帽大约有多

13、少个(取取3.14)?)?3/8.7cmg 解:六角螺帽的体积是六棱解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即柱的体积与圆柱体积之差,即:10)210(14.3106124322V)(29563mm)(956.23cm所以螺帽的个数为所以螺帽的个数为252)956.28.7(10008.5(个)(个)答:这堆螺帽大约有答:这堆螺帽大约有252252个个球的体积和表面积334RV O B A24 RS 设球的半径为R,则有体积公式和表面积公式R设球的半径为R,则球的体积公式为V球 .43R3例例1(2009年高考上海卷年高考上海卷)若球若球O1、O2表表面积之比面积之比4,则它们的半径之

14、比,则它们的半径之比_.(1)(1)若球的表面积变为原来的若球的表面积变为原来的2 2倍倍,则半径变为原来的则半径变为原来的倍。倍。(2)(2)若球半径变为原来的若球半径变为原来的2 2倍,则表面积变为原来的倍,则表面积变为原来的倍。倍。(3)(3)若两球表面积之比为若两球表面积之比为1:21:2,则其体积之比是,则其体积之比是。(4)(4)若两球体积之比是若两球体积之比是1:21:2,则其表面积之比是,则其表面积之比是。例例2 2:2422:134:1球的体积和表面积23aR 222a32344)a(RS球 例2.已知正方体的八个顶点都在球O的球面上,且正方体的棱长为a,求球O的表面积和体积

15、.ACo o解答:正方体的一条对角线是球的一条直径,所以球的半径为33a23a2334V)(球例例3.3.如图,正方体如图,正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1的棱长为的棱长为a,a,它的各个它的各个顶点都在球顶点都在球O O的球面上,问球的球面上,问球O O的表面积。的表面积。A AB BC CD DD D1 1C C1 1B B1 1A A1 1O OA AB BC CD DD D1 1C C1 1B B1 1A A1 1O O分析:正方体内接于球,则由球和正方体都是中心对称图形可分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则

16、正方体对角线与球的直径相等。知,它们中心重合,则正方体对角线与球的直径相等。略解:2222211113423,)2()2(22:aRSaRaaRaDBRDBDDBRt得得:,中中变题变题1.1.如果球如果球O O和这个正方体的六个面都相切,则有和这个正方体的六个面都相切,则有S=S=。变题变题2.2.如果球如果球O O和这个正方体的各条棱都相切,则有和这个正方体的各条棱都相切,则有S=S=。2a2 2 a 关键关键:找正方体的棱长找正方体的棱长a a与球半径与球半径R R之间的关系之间的关系OABCO 例例4已知过球面上三点已知过球面上三点A、B、C的截面到球心的截面到球心O的距离的距离等于球

17、半径的一半,且等于球半径的一半,且AB=BC=CA=cm,求球的体,求球的体积,表面积积,表面积解:如图,设球解:如图,设球O半径为半径为R,截面截面 O的半径为的半径为r,r332AB2332AO 是正三角形,是正三角形,ABCROO,2 题型一题型一 旋转体的表面积及其体积旋转体的表面积及其体积 如图所示如图所示,半径为半径为R R的半圆内的的半圆内的 阴影部分以直径阴影部分以直径ABAB所在直线为轴所在直线为轴,旋旋 转一周得到一几何体转一周得到一几何体,求该几何体的求该几何体的 表面积表面积(其中其中BACBAC=30=30)及其体积及其体积.先分析阴影部分旋转后形成几何体的先分析阴影

18、部分旋转后形成几何体的 形状形状,再求表面积再求表面积.解解 如图所示如图所示,过过C C作作COCO1 1ABAB于于O O1 1,在半圆中可得在半圆中可得BCABCA=90=90,BACBAC=30=30,ABAB=2=2R R,ACAC=,BCBC=R R,S S球球=4=4R R2 2,R3,231RCO,231123234,2323,233232222112121RRRRSSSSRRRSRRRSBOAOBOAO侧圆锥侧圆锥球几何体表侧圆锥侧圆锥.23112R表面积为旋转所得到的几何体的 解决这类题的关键是弄清楚旋转后所解决这类题的关键是弄清楚旋转后所形成的图形的形状,再将图形进行合理

19、的分割,形成的图形的形状,再将图形进行合理的分割,然后利用有关公式进行计算然后利用有关公式进行计算.652134)(41314131,34333111221111221113RRRVVVVBORCOBOVAORCOAOVRVBOAOBOAO圆锥圆锥球几何体圆锥圆锥球又知能迁移知能迁移2 2 已知球的半径为已知球的半径为R R,在球内作一个内,在球内作一个内 接圆柱,这个圆柱底面半径与高为何值时,它接圆柱,这个圆柱底面半径与高为何值时,它 的侧面积最大?侧面积的最大值是多少?的侧面积最大?侧面积的最大值是多少?解解 如图为轴截面如图为轴截面.设圆柱的高为设圆柱的高为h h,底面半径为,底面半径为

20、r r,侧面积为侧面积为S S,则,则,)2(222Rrh.2414,2,22,21.41)21(4)(442.2242242222222222RRRhRrRrRRrrRrrRrrhSrRh最大值是最大圆柱侧面积时即当且仅当即知能迁移知能迁移2 2 已知球的半径为已知球的半径为R R,在球内作一个内,在球内作一个内 接圆柱,这个圆柱底面半径与高为何值时,它接圆柱,这个圆柱底面半径与高为何值时,它 的侧面积最大?侧面积的最大值是多少?的侧面积最大?侧面积的最大值是多少?解解 如图为轴截面如图为轴截面.设圆柱的高为设圆柱的高为h h,底面半径为,底面半径为r r,侧面积为侧面积为S S,则,则,)

21、2(222Rrh.2414,2,22,21.41)21(4)(442.2242242222222222RRRhRrRrRRrrRrrRrrhSrRh最大值是最大圆柱侧面积时即当且仅当即题型二题型二 多面体的表面积及其体积多面体的表面积及其体积 一个正三棱锥的底面边长为一个正三棱锥的底面边长为6 6,侧棱长,侧棱长 为为 ,求这个三棱锥的体积,求这个三棱锥的体积.本题为求棱锥的体积问题本题为求棱锥的体积问题.已知底面已知底面 边长和侧棱长,可先求出三棱锥的底面面积边长和侧棱长,可先求出三棱锥的底面面积 和高,再根据体积公式求出其体积和高,再根据体积公式求出其体积.解解 如图所示,如图所示,正三棱

22、锥正三棱锥S SABCABC.设设H H为正为正ABCABC的中心,的中心,连接连接SHSH,则则SHSH的长即为该正三棱锥的高的长即为该正三棱锥的高.15连接连接AHAH并延长交并延长交BCBC于于E E,则则E E为为BCBC的中点,且的中点,且AHAHBCBC.ABCABC是边长为是边长为6 6的正三角形,的正三角形,,33623AE.93393131312153215,Rt.393362121,.323222SHSV,AHSASH,AHSASHAAEBCSABCAEAHABCABC正三棱锥中在中在 求锥体的体积,要选择适当的底面和求锥体的体积,要选择适当的底面和高,然后应用公式高,然后

23、应用公式 进行计算即可进行计算即可.常用方常用方法:割补法和等积变换法法:割补法和等积变换法.(1 1)割补法:求一个几何体的体积可以将这个几)割补法:求一个几何体的体积可以将这个几何体分割成几个柱体、锥体,分别求出锥体和柱何体分割成几个柱体、锥体,分别求出锥体和柱体的体积,从而得出几何体的体积体的体积,从而得出几何体的体积.(2 2)等积变换法:利用三棱锥的任一个面可作为)等积变换法:利用三棱锥的任一个面可作为三棱锥的底面三棱锥的底面.求体积时,可选择容易计算的方求体积时,可选择容易计算的方式来计算;利用式来计算;利用“等积性等积性”可求可求“点到面的点到面的距离距离”.ShV31题型题型三

24、三 组合体的表面积及其体积组合体的表面积及其体积 (12 (12分分)如图所示如图所示,在等腰梯形在等腰梯形ABCDABCD中中,ABAB=2=2DCDC=2=2,DABDAB=60=60,E E为为ABAB的中点,的中点,将将ADEADE与与BECBEC分别沿分别沿EDED、ECEC向上折起,向上折起,使使A A、B B重合重合,求形成的三棱锥的外接球的体积求形成的三棱锥的外接球的体积.易知折叠成的几何体是棱长为易知折叠成的几何体是棱长为1 1的正的正 四面体,要求外接球的体积只要求出外接球的四面体,要求外接球的体积只要求出外接球的 半径即可半径即可.解解 由已知条件知,平面图形中由已知条件

25、知,平面图形中 AEAE=EBEB=BCBC=CDCD=DADA=DEDE=ECEC=1.=1.折叠后得到一个正四面体折叠后得到一个正四面体.2.2分分 方法一方法一 作作AFAF平面平面DECDEC,垂足为,垂足为F F,F F即为即为DECDEC的中心的中心.取取ECEC的中点的中点G G,连接,连接DGDG、AGAG,过球心过球心O O作作OHOH平面平面AECAEC.则垂足则垂足H H为为AECAEC的中心的中心.4.4分分外接球半径可利用外接球半径可利用OHAOHAGFAGFA求得求得.在在AFGAFG和和AHOAHO中,根据三角形相似可知,中,根据三角形相似可知,,36)33(1,232AFAG.864663434.46363323.3333OAAFAHAGOAAH外接球体积为6 6分分1010分分1212分分方法二方法二 如图所示,把正四面体放在正如图所示,把正四面体放在正方体中方体中.显然,正四面体的外接球就显然,正四面体的外接球就是正方体的外接球是正方体的外接球.3.3分分正四面体的棱长为正四面体的棱长为1 1,正方体的棱长为正方体的棱长为 ,6 6分分22.86.86)46(34,46,22323为该三棱锥外接球的体积体积为外接球直径RR9 9分分1212分分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(131空间几何体的表面积与体积解析课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|