[计算机]客户关系管理与数据挖掘课件.ppt

上传人(卖家):晟晟文业 文档编号:5102874 上传时间:2023-02-11 格式:PPT 页数:35 大小:451.52KB
下载 相关 举报
[计算机]客户关系管理与数据挖掘课件.ppt_第1页
第1页 / 共35页
[计算机]客户关系管理与数据挖掘课件.ppt_第2页
第2页 / 共35页
[计算机]客户关系管理与数据挖掘课件.ppt_第3页
第3页 / 共35页
[计算机]客户关系管理与数据挖掘课件.ppt_第4页
第4页 / 共35页
[计算机]客户关系管理与数据挖掘课件.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、Company LogoCompany Logo客户关系管理与数据挖掘客户关系管理与数据挖掘参考文献参考文献v【1】客户关系管理与数据挖掘客户关系管理与数据挖掘万方数据万方数据2008-8-18 边岗亮边岗亮 范景军范景军 v【2】如何找到启动如何找到启动CRM项目的金钥匙项目的金钥匙中国计算中国计算机报机报 2004-02-18 熊勇、鲁向阳、吴超、李琼熊勇、鲁向阳、吴超、李琼v【3】回顾回顾CRM历史历史大中华客户关系管理组织大中华客户关系管理组织(www.GreaterChinaCRM.org)2002-09-12 Mei Lin Fung v【4】数据挖掘在数据挖掘在CRM中的应用分析

2、中的应用分析中华硕博网中华硕博网(www.CHINA-B.com)2009-04-21v【5】遗传算法遗传算法百度百科百度百科http:/ 2009-05-13 内容内容背景背景一、客户关系管理一、客户关系管理 二、数据挖掘是二、数据挖掘是CRMCRM成功的保障成功的保障三、数据挖掘技术三、数据挖掘技术四、结论四、结论背景知识背景知识v联机事务处理联机事务处理OLTP(On-line transaction processing):也称为面向交易的处理系统,:也称为面向交易的处理系统,其基本特征是顾客的原始数据可以立即传送到其基本特征是顾客的原始数据可以立即传送到计算中心进行处理,并在很短的时

3、间内给出处计算中心进行处理,并在很短的时间内给出处理结果。这样做的最大优点是可以即时地处理理结果。这样做的最大优点是可以即时地处理输入的数据,及时地回答。也称为实时系统输入的数据,及时地回答。也称为实时系统(Real time System)。OLTP是传统的关是传统的关系型数据库的主要应用,主要是基本的、日常系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。的事务处理,例如银行交易。背景知识背景知识v OLTP在企业的应用日渐成熟,能顺利地完成事务型业在企业的应用日渐成熟,能顺利地完成事务型业务,如自动开机(电信运营商)、即时交易(金融企务,如自动开机(电信运营商)、即时交易

4、(金融企业)、实时收银入账(零售商场)。业)、实时收银入账(零售商场)。v 但随着金融、电信等高端服务业的市场逐渐完善,但随着金融、电信等高端服务业的市场逐渐完善,OLTP系统的不足和局限也越来越为人所诟病,这是因系统的不足和局限也越来越为人所诟病,这是因为为OLTP是处理事务的系统,可是面对诸如是处理事务的系统,可是面对诸如什么客户的什么客户的利润率最高利润率最高、哪些客户摇摆不定有离开的想法哪些客户摇摆不定有离开的想法、哪些客哪些客户有继续购买的需求户有继续购买的需求、客户喜欢什么客户喜欢什么等等问题时,就开等等问题时,就开始显得苍白无力了。因为手头现有的大量报表、报告,始显得苍白无力了。

5、因为手头现有的大量报表、报告,虽然它们详尽地说明了过去甚至今天正在发生的事件,虽然它们详尽地说明了过去甚至今天正在发生的事件,却不能回答明天将要发生的事情。却不能回答明天将要发生的事情。背景知识背景知识vCRM是为了帮助发现以往没有发现的是为了帮助发现以往没有发现的“问题问题”,发现隐藏在数据海洋里的发现隐藏在数据海洋里的“规律规律”和和“趋势趋势”。CRM的重要功能是预测未来。它的独特之处是,的重要功能是预测未来。它的独特之处是,能充分利用企业历史上的数据,来预测企业的能充分利用企业历史上的数据,来预测企业的未来,使企业能领先一步,识别风险和机会,未来,使企业能领先一步,识别风险和机会,超前

6、采取应对策略。超前采取应对策略。一、客户关系管理一、客户关系管理客户关系管理的定义 1客户关系管理的研究和应用现状 2一、客户关系管理一、客户关系管理客户关系管理的定义 1客户关系管理的研究和应用现状 2v 客户关系管理(客户关系管理(Customer Relationship Management,CRM)首先是一种管理理念。其核)首先是一种管理理念。其核心思想是将企业的客户作为重要的资源,通过完善的客心思想是将企业的客户作为重要的资源,通过完善的客户服务和深入的客户分析来满足客户的需求,保证实现户服务和深入的客户分析来满足客户的需求,保证实现客户的终生价值。客户的终生价值。v CRM又是一

7、种旨在改善企业与客户之间关系的新型管又是一种旨在改善企业与客户之间关系的新型管理机制,它实现于企业的市场营销、销售、服务与技术理机制,它实现于企业的市场营销、销售、服务与技术支持等与客户相关的领域。支持等与客户相关的领域。v CRM也是一种管理软件和技术。现在市场中也是一种管理软件和技术。现在市场中CRM供应供应商较多。国际的有商较多。国际的有Siebel、Oracol、Borland、sybase;国内的用友、中圣、金蝶创智等。;国内的用友、中圣、金蝶创智等。一、客户关系管理一、客户关系管理客户关系管理的定义 1客户关系管理的研究和应用现状 2vCRM起源于起源于20世纪世纪80年代初提出的

8、接触管理年代初提出的接触管理(Contact Management),即专门收集),即专门收集整理客户与公司联系的所有信息。整理客户与公司联系的所有信息。v到到20世纪世纪90年代初期则演变成为包括服务中年代初期则演变成为包括服务中心与支持资料分析的客户服务(心与支持资料分析的客户服务(Customer Care)。)。v经历了经历了20余年不断演变发展,余年不断演变发展,CRM逐渐形成逐渐形成了一整套管理理论体系和应用技术体系。了一整套管理理论体系和应用技术体系。一、客户关系管理一、客户关系管理客户关系管理的研究和应用现状 2vCRM的概念发展到今天主要经历了的概念发展到今天主要经历了3个阶

9、段:个阶段:1、成功应用于销售和市场的客户关系数据应、成功应用于销售和市场的客户关系数据应用软件。(用软件。(1990年)年)2、客户关系营销、客户关系营销Pepper和和Rogers的的1对对1市场营销理论。(市场营销理论。(90年代中期)年代中期)3通过数据库营销应用客户终身价值分析。通过数据库营销应用客户终身价值分析。(90年代后期)年代后期)一、客户关系管理一、客户关系管理客户关系管理的研究和应用现状 2v从全球的范围看,从全球的范围看,2002年市场对年市场对CRM的需求的需求已经比已经比ERP(企业资源计划)高,(企业资源计划)高,CRM销售量销售量每年的增长率超过了每年的增长率超

10、过了30%,而,而ERP只有只有10%。vCRM应用最广泛的领域是与科技和计算机相关应用最广泛的领域是与科技和计算机相关的领域,这一领域中的企业由于信息化程度高的领域,这一领域中的企业由于信息化程度高和自身的优势,能够通过和自身的优势,能够通过CRM系统建立起与客系统建立起与客户之间的有效价值链,从而创造更大的效益。户之间的有效价值链,从而创造更大的效益。一、客户关系管理一、客户关系管理客户关系管理的研究和应用现状 2在国内,多数企业将大部分力气投入到企业内部信息系统的建设上,这意味着CRM在我国的应用还不成熟。在我国生产总值中占据重要地位的传统企业在CRM的市场中所占比例较小。加入WTO后企

11、业面临着更为严峻的国际竞争,因此企业迫切需要寻找类似CRM的新思路、新理念来增强企业的竞争力。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖掘使市场信息触手可及1数据挖掘将数据加工成信息和知识 2二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖掘使市场信息触手可及1数据挖掘将数据加工成信息和知识 2v数据库及数据挖掘技术(数据库及数据挖掘技术(Data Mining,DM)可以扩展企业核心业务过程的信息后勤基础,可以扩展企业核心业务过程的信息后勤基础,通过数据挖掘来保证对数据的访问及分析,从通过数据挖掘来保证对数据的访问及分析,从而提高业务过程的有效性。而提高业务过程

12、的有效性。v数据挖掘技术基于事实,利用数据仓库中产品、数据挖掘技术基于事实,利用数据仓库中产品、价格、投资、分配等方面,从浩瀚的信息海洋价格、投资、分配等方面,从浩瀚的信息海洋中提炼出有价值的信息,发现隐含在这些信息中提炼出有价值的信息,发现隐含在这些信息中的对等的、不明显的、不可预知的模式、趋中的对等的、不明显的、不可预知的模式、趋势和关系,为企业提供决策的依据。势和关系,为企业提供决策的依据。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖掘使市场信息触手可及1数据挖掘将数据加工成信息和知识2v在在CRM中,数据仓库将海量复杂的客户行为数中,数据仓库将海量复杂的客户行为数据集中

13、起来建立一个整合的、结构化的数据模据集中起来建立一个整合的、结构化的数据模型,在此基础上对数据进行标准化、抽象化、型,在此基础上对数据进行标准化、抽象化、规范化分类、分析,为企业管理层提供及时的规范化分类、分析,为企业管理层提供及时的决策信息,为企业业务部门提供有效的反馈数决策信息,为企业业务部门提供有效的反馈数据。据。v数据挖掘技术的作用在企业管理客户生命周期数据挖掘技术的作用在企业管理客户生命周期的各个阶段都会有所体现。的各个阶段都会有所体现。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖掘将数据加工成信息和知识 2v 数据挖掘的主要方法包括关联分析、时序模式、分类、数据挖掘

14、的主要方法包括关联分析、时序模式、分类、聚类、偏差分析以及猜测等,它们可以应用到以客户为聚类、偏差分析以及猜测等,它们可以应用到以客户为中心的企业决策分析及治理的不同中心的企业决策分析及治理的不同领域和阶段领域和阶段:1.关联分析。其目的就是挖掘出隐藏在数据间的相互关关联分析。其目的就是挖掘出隐藏在数据间的相互关系。例如,系。例如,80%顾客同时会在购买某种顾客同时会在购买某种A产品的同时产品的同时购买购买B产品,这就是一条关联规则。产品,这就是一条关联规则。2.时序模式。通过时间序列搜索出重复发生概率较高的时序模式。通过时间序列搜索出重复发生概率较高的模式,这里强调时间序列的影响。例如,某段

15、时间内,模式,这里强调时间序列的影响。例如,某段时间内,购买了购买了A产品的人中,产品的人中,70%的人会买的人会买B产品。产品。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖掘将数据加工成信息和知识 2 3.分类。找出一个类别的概念描述,它代表了这类数据的整分类。找出一个类别的概念描述,它代表了这类数据的整体信息。分类是数据挖掘中应用最多的任务。要为每个类别体信息。分类是数据挖掘中应用最多的任务。要为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其他数据库中的记录进行分类。这个分类规则对其他数据库中

16、的记录进行分类。4.聚类。按一定规则将数据分为一系列有意义的子集。通俗聚类。按一定规则将数据分为一系列有意义的子集。通俗地讲,就是多元统计中研究所谓地讲,就是多元统计中研究所谓“物以类聚物以类聚”现象的一种现象的一种方法,其职能是对一批样本或指标按它们在性质上的亲疏程方法,其职能是对一批样本或指标按它们在性质上的亲疏程度来进行分类,采用不同的聚类方法,对于相同的记录集合度来进行分类,采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果。可能有不同的划分结果。5.偏差分析。从数据库中找出异常数据。偏差分析。从数据库中找出异常数据。6.猜测。利用历史数据找出规律,建立模型,并用此模型猜猜测。

17、利用历史数据找出规律,建立模型,并用此模型猜测未来数据的种类、特征等。测未来数据的种类、特征等。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖掘将数据加工成信息和知识 2v CRM中数据挖掘的中数据挖掘的工作流程工作流程:1.数据抽样。当进行数据挖掘时,首先要从企业大量客数据抽样。当进行数据挖掘时,首先要从企业大量客户信息数据中抽取出相关的数据子集。通过对数据样本户信息数据中抽取出相关的数据子集。通过对数据样本的精选,不仅能减少数据处理量,节省系统资源,而且的精选,不仅能减少数据处理量,节省系统资源,而且能通过对数据的筛选,使数据更加具有规律性。能通过对数据的筛选,使数据更加具有

18、规律性。2.数据探索。数据探索就是通常所进行的对数据深入调数据探索。数据探索就是通常所进行的对数据深入调查的过程,从样本数据集中找出规律和趋势,用聚类分查的过程,从样本数据集中找出规律和趋势,用聚类分析区分类别,最终要达到的目的就是搞清楚多因素相互析区分类别,最终要达到的目的就是搞清楚多因素相互影响的、十分复杂的关系,发现因素之间的相关性。影响的、十分复杂的关系,发现因素之间的相关性。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖掘将数据加工成信息和知识 2 3.数据调整。通过上述两个步骤的操作,对数据的状态数据调整。通过上述两个步骤的操作,对数据的状态和趋势有了进一步的了解,这

19、时要尽可能对问题解决的和趋势有了进一步的了解,这时要尽可能对问题解决的要求进一步明确化、进一步量化。要求进一步明确化、进一步量化。4.模型化。在问题进一步明确,数据结构和内容进一步模型化。在问题进一步明确,数据结构和内容进一步调整的基础上,就可以建立模型。这一步是数据挖掘的调整的基础上,就可以建立模型。这一步是数据挖掘的核心环节,运用神经网络、决策树、数理统计、时间序核心环节,运用神经网络、决策树、数理统计、时间序列分析等方法来建立模型。列分析等方法来建立模型。5.评价。从上述过程中将会得出一系列的分析结果、模评价。从上述过程中将会得出一系列的分析结果、模式和模型,多数情况会得出对目标问题多侧

20、面的描述,式和模型,多数情况会得出对目标问题多侧面的描述,这时就要综合它们的规律性,提供合理的决策支持信息。这时就要综合它们的规律性,提供合理的决策支持信息。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖掘将数据加工成信息和知识 2v CRM中数据挖掘的中数据挖掘的应用应用:1.客户的获取。把客户根据其性别、收入、交易行为特客户的获取。把客户根据其性别、收入、交易行为特征等属性细分为具有不同需求和交易习惯的群体,同一征等属性细分为具有不同需求和交易习惯的群体,同一群体中的客户对产品的需求以及交易心理等方面具有相群体中的客户对产品的需求以及交易心理等方面具有相似性,而不同群体间差异

21、较大。这样就有助于企业在营似性,而不同群体间差异较大。这样就有助于企业在营销中更加贴近顾客需求。分类和聚类等挖掘方法可以把销中更加贴近顾客需求。分类和聚类等挖掘方法可以把大量的客户分成不同的类,适合于进行客户细分。通过大量的客户分成不同的类,适合于进行客户细分。通过群体细分,群体细分,CRM用户可以更好地理解客户,发现群体用户可以更好地理解客户,发现群体客户的行为规律。在行为分组完成后,还要进行客户理客户的行为规律。在行为分组完成后,还要进行客户理解、客户行为规律发现和客户组之间的交叉分析。解、客户行为规律发现和客户组之间的交叉分析。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖

22、掘将数据加工成信息和知识 2 2.重点客户发现。就是找出对企业具有重要意义的客户,重点客户发现。就是找出对企业具有重要意义的客户,重点客户发现主要包括:发现有价值的潜在客户;发现重点客户发现主要包括:发现有价值的潜在客户;发现有更多的消费需求的同一客户;发现更多使用的同一种有更多的消费需求的同一客户;发现更多使用的同一种产品或服务;保持客户的忠诚度。根据产品或服务;保持客户的忠诚度。根据80/20以及开以及开发新客户的费用是保留老客户费用的发新客户的费用是保留老客户费用的5倍等营销原则,倍等营销原则,重点客户发现在重点客户发现在CRM中具有举足轻重的作用。中具有举足轻重的作用。二、数据挖掘是二

23、、数据挖掘是CRM成功的保障成功的保障数据挖掘将数据加工成信息和知识 2 3.交叉营销。商家与其客户之间的商业关系是一种持续交叉营销。商家与其客户之间的商业关系是一种持续的不断发展的关系,通过不断地相互接触和交流,客户的不断发展的关系,通过不断地相互接触和交流,客户得到了更好更贴切的服务质量,商家则因为增加了销售得到了更好更贴切的服务质量,商家则因为增加了销售量而获利。交叉营销指向已购买商品的客户推荐其他产量而获利。交叉营销指向已购买商品的客户推荐其他产品和服务。这种策略成功的关键是要确保推销的产品是品和服务。这种策略成功的关键是要确保推销的产品是用户所感爱好的,有几种挖掘方法都可以应用于此问

24、题,用户所感爱好的,有几种挖掘方法都可以应用于此问题,关联规则分析能够发现顾客倾向于关联购买哪些商品;关联规则分析能够发现顾客倾向于关联购买哪些商品;聚类分析能够发现对特定产品感爱好的用户群;神经网聚类分析能够发现对特定产品感爱好的用户群;神经网络、回归等方法能够猜测顾客购买该新产品的可能性。络、回归等方法能够猜测顾客购买该新产品的可能性。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数据挖掘将数据加工成信息和知识 2 4.客户分析。主要包括:客户价值金字塔分析、客户分客户分析。主要包括:客户价值金字塔分析、客户分布分析、新增客户分析、流失客户分析和购买行为分析。布分析、新增客户分析、

25、流失客户分析和购买行为分析。其中分类等技术能够判定具备哪些特性的客户群体最轻其中分类等技术能够判定具备哪些特性的客户群体最轻易流失,建立客户流失猜测模型,从而帮助企业对有流易流失,建立客户流失猜测模型,从而帮助企业对有流失风险的顾客提前采取相应营销措施。利用数据挖掘技失风险的顾客提前采取相应营销措施。利用数据挖掘技术,可以通过挖掘大量的客户信息来构建猜测模型,较术,可以通过挖掘大量的客户信息来构建猜测模型,较准确地找出易流失客户群,并制订相应的方案,最大程准确地找出易流失客户群,并制订相应的方案,最大程度地保持住老客户。度地保持住老客户。二、数据挖掘是二、数据挖掘是CRM成功的保障成功的保障数

26、据挖掘将数据加工成信息和知识 2 5.性能评估。以客户所提供的市场反馈为基础,通过数性能评估。以客户所提供的市场反馈为基础,通过数据仓库的数据清洁与集中过程,将客户对市场的反馈自据仓库的数据清洁与集中过程,将客户对市场的反馈自动地输入到数据仓库中,从而进行客户行为跟踪。动地输入到数据仓库中,从而进行客户行为跟踪。v 性能分析性能分析与与客户行为分析客户行为分析和和重点客户发现重点客户发现是相互交叠的是相互交叠的过程,这样才能保证企业的客户关系治理能够达到既定过程,这样才能保证企业的客户关系治理能够达到既定的目标,建立良好的客户关系。的目标,建立良好的客户关系。三、数据挖掘技术三、数据挖掘技术数

27、据挖掘技术 决策树法、遗传算法、决策树法、遗传算法、集合论方法、神经网络方法、神经网络方法、聚类方法、粗集方法、模糊集合方法、Bayesian Belief Netords、最邻近算法、关联规则挖掘算法、可视化技术等 三、数据挖掘技术三、数据挖掘技术ID3决策树法主要思想:ID3方法检验所有的特征,选择互信息最大的特征点A为产生决策树节点,由该特征的不同取值建立分支,对各分支的实例子集递归,用该方法建立决策树节点和分支,直到某一子集中的例子属于同一类。三、数据挖掘技术三、数据挖掘技术ID3决策树法 主算法主算法1、从训练集中随机选择一个既含正例又含反例的子集(称为窗口);2、用建树算法使当前窗

28、口形成一裸决策树;3、对训练集(窗口除外)中例子用所得决策树进行类别判定,找出错判的例子;4、若存在错判的例子,把它们插入窗口,转B,否则结束。建树算法建树算法 1、对当前例子集合计算各特征的互信息;2、选择互信息最大的特征A(i);3、把在A(i)处取值相同的例子归于同一子集,A(i)取几个值就得几个子集;4、对既含正例又含反例的子集,递归调用建树算法;5、若子集仅含正例或反例,对应分支标上p或N,返回调用处。三、数据挖掘技术三、数据挖掘技术神经网络方法 主要思想:以神经生理学为基础,模拟人的神经元功能,经过输入层、隐藏层、输出层等,对数据进行调整,计算,最后得到结果,用于分类和回归。三、数

29、据挖掘技术三、数据挖掘技术v 一个简单的神经网络,图中的椭圆表示节点,椭圆一个简单的神经网络,图中的椭圆表示节点,椭圆间的连线表示连接。神经网络接受左边节点的属性间的连线表示连接。神经网络接受左边节点的属性值,并对其进行计算,右边的节点就产生新值,这值,并对其进行计算,右边的节点就产生新值,这个值表示神经网络模型的预测值。个值表示神经网络模型的预测值。三、数据挖掘技术三、数据挖掘技术遗传算法(Genetic Algorithm,GA)主要思想:基于自然进化理论,模拟基因联合、突变、选择等过程的一种优化技术。三、数据挖掘技术三、数据挖掘技术遗传算法 创建一个随机的初始状态:创建一个随机的初始状态

30、:初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代。评估适应度:评估适应度:对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。繁殖繁殖(包括子代突变包括子代突变):带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。下一代:下一代:如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。并行计算:并行

31、计算:非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。三、数据挖掘技术三、数据挖掘技术遗传算法计算过程:计算过程:1、选择(复制):根据各个个体的适应度,按照一定的规则或方法,从第t代群体P(t)中选择出一些优良的个体遗传到下 一代群体P(t+1)中;2、交叉:将群体P(t)内的各个个体随机搭配成对,对每一对个体,以某个概率(称为交

32、叉概率)交换它们之间的部分染色体;3、变异:对群体P(t)中的每一个个体,以某一概率(称为变异概率)改变某一个或某一些基因座上的基因值为其他基因值。四、结论四、结论CRM作为一个涉及知识治理、业务流程再造和企业信息化的概念,看起来非常复杂,其实它最基础的是一整套数据仓库客户资料系统。实施和运用CRM,应该从最基础的应用开始,将客户基础数据治理好,服务好和应用好。很显然,假如没有数据仓库技术的支持,CRM的实用价值将会大打折扣。因此,只有融合了数据挖掘技术的高效的客户关系治理才能更好地适应当今信息时代及其网络化特征,成为现代企业在激烈的市场竞争中生存的根本和制胜的关键。四、结论四、结论数据挖掘是CRM的前提和基础,CRM是数据挖掘的延续和创新,通过将两者进行有效的组合,不断促进企业单个客户价值的提升和客户规模的扩大,有效地推动着企业价值和实力的不断攀升。Company LogoCompany LogoThank you

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文([计算机]客户关系管理与数据挖掘课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|