柱-锥-台的侧面展开与面积课件.ppt

上传人(卖家):晟晟文业 文档编号:5150071 上传时间:2023-02-15 格式:PPT 页数:27 大小:933.50KB
下载 相关 举报
柱-锥-台的侧面展开与面积课件.ppt_第1页
第1页 / 共27页
柱-锥-台的侧面展开与面积课件.ppt_第2页
第2页 / 共27页
柱-锥-台的侧面展开与面积课件.ppt_第3页
第3页 / 共27页
柱-锥-台的侧面展开与面积课件.ppt_第4页
第4页 / 共27页
柱-锥-台的侧面展开与面积课件.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、7 简单几何体的再认识7.1 柱、锥、台的侧面展开与面积1 1掌握柱体、锥体、台体的侧面积公式掌握柱体、锥体、台体的侧面积公式.(重点重点)2 2能应用公式求柱体、锥体、台体的侧面积能应用公式求柱体、锥体、台体的侧面积,熟悉熟悉柱体与锥体、台体之间的转换关系柱体与锥体、台体之间的转换关系.(难点难点)思考思考1:1:把圆柱的侧面沿着一条母线展开,得到什把圆柱的侧面沿着一条母线展开,得到什么图形么图形?展开的图形与原图有什么关系?展开的图形与原图有什么关系?提示:提示:长方形长方形长方形的面积等于圆柱的侧面积长方形的面积等于圆柱的侧面积探究点探究点1 1 圆柱、圆锥、圆台的侧面积圆柱、圆锥、圆台

2、的侧面积rlr2 长长宽宽l2 r圆柱侧长方形SSl长方形长方形 将空间图形问题转化为平面图形问题,是解立将空间图形问题转化为平面图形问题,是解立体几何问题最基本、最常用的方法体几何问题最基本、最常用的方法.特别提醒特别提醒 思考思考2:2:把圆锥的侧面沿着一条母线展开,得到把圆锥的侧面沿着一条母线展开,得到什么图形什么图形?展开的图形与原图有什么关系?展开的图形与原图有什么关系?提示:提示:扇形扇形扇形的面积等于圆锥的侧面积扇形的面积等于圆锥的侧面积rl2 r扇llR 扇扇扇形扇形12SSl R圆锥侧扇扇扇12l lrl扇 思考思考3:3:把圆台的侧面沿着一条母线展开,得到把圆台的侧面沿着一

3、条母线展开,得到什么图形什么图形?展开的图形与原图有什么关系?展开的图形与原图有什么关系?提示:提示:扇环扇环 扇环的面积等于圆台的扇环的面积等于圆台的 侧面积侧面积1r2rl因为因为12,rxrxl即121,rlxrr所以所以21Sr lxr x扇环221221r lr xr xr lrrx2112).rlrlrr l(在 S0 A和 S0B中SABxl扇环22 r12 r2r1roo1r2rl扇环扇环SS圆台侧扇环12)rr l(注意转化!注意转化!思考思考4 4:将圆柱、圆锥、圆台的侧面积公式进行比将圆柱、圆锥、圆台的侧面积公式进行比较,你能发现它们的联系和区别吗?较,你能发现它们的联系

4、和区别吗?Srl圆锥侧12Srr l圆台侧10r=2Srl圆柱侧12rrr=rllr1r2r答:圆台的侧面积为答:圆台的侧面积为600 cm600 cm2 2.例例1 1 圆台的上、下底面半径分别是圆台的上、下底面半径分别是10 cm10 cm和和20 cm,20 cm,它它的侧面展开图的扇环的圆心角是的侧面展开图的扇环的圆心角是180180,那么圆台的侧,那么圆台的侧面积是多少?(结果中保留面积是多少?(结果中保留 )解解:如图,设上底面周长为如图,设上底面周长为c,c,因为扇环因为扇环的圆心角是的圆心角是180180,所以,所以c=SAc=SA又因为又因为c=2 c=2 10=20 ,10

5、=20 ,所以所以SA=20.SA=20.同理同理SB=40.SB=40.所以,所以,AB=SB-SA=20,SAB=SB-SA=20,S圆台侧圆台侧=2(1020)20600().cm12(rr)AB2222Srrlr rl圆柱表2Srrlr rl圆锥表圆柱的表面积为:圆柱的表面积为:圆锥的表面积为:圆锥的表面积为:圆台的表面积为:圆台的表面积为:221212Srrrlr l圆台表【提升总结提升总结】圆柱、圆台、圆锥表面积公式圆柱、圆台、圆锥表面积公式思考思考1 1:把直棱柱、正棱锥、正棱台的侧面分别沿着一把直棱柱、正棱锥、正棱台的侧面分别沿着一条侧棱展开,分别得到什么图形?侧面积是多少?条

6、侧棱展开,分别得到什么图形?侧面积是多少?类比圆柱、类比圆柱、圆锥、圆台!圆锥、圆台!探究点探究点2 2 直棱柱、正棱锥、正棱台的侧面积直棱柱、正棱锥、正棱台的侧面积)chSabdhch直棱柱侧(其中 为底面周长,为高habdabhhdhh1Sch2正棱锥侧 ch其中 为底面周长,为斜高,即侧面等腰三角形的高.hh1Scc)h2正棱台侧(C CC Cc,ch其中分别为上、下底面周长,为斜高,即侧面等腰梯形的高.思考思考2 2:将直棱柱、正棱锥、正棱台的侧面积公式进将直棱柱、正棱锥、正棱台的侧面积公式进行比较行比较,你能发现它们的联系和区别吗?你能发现它们的联系和区别吗?1cc)2Sh正 棱 台

7、 侧(12Sch正 棱 锥 侧Schch直 棱 柱 侧=c0=cc=例例2 2:一个正三棱台的上、下底面边长分别是:一个正三棱台的上、下底面边长分别是3 cm3 cm和和6 cm6 cm,高是,高是 求三棱台的侧面积求三棱台的侧面积.分析:分析:关键是求出斜高,注意图中的直角梯形关键是求出斜高,注意图中的直角梯形3cm2,B B1 1A AB BC CC C1 1A A1 1O O1 1O OD DD D1 1E E解解 如图如图1,O O分别是上分别是上、下底面的中心下底面的中心,则则1OO=32,连接连接11AO并并延延长交长交11BC于于1D,连接连接AO并并延延长长交交BC 于于D,过

8、过1D作作1D EAD于于E.在在1Rt D ED中中,1132D EOO,11133(63)322DEDOOEDODO,22221133()+()322DDD EDE,所以所以21127 3=()().22SccDDcm正三棱台侧 答答:三棱台的侧面积为三棱台的侧面积为227 32cm.简单几何体的侧面积简单几何体的侧面积几何体几何体侧面展开图侧面展开图侧面积公式侧面积公式圆柱圆柱S S圆柱侧圆柱侧=_=_r r为底面半径为底面半径l为为_圆锥圆锥S S圆锥侧圆锥侧=_=_r r为底面半径为底面半径l为为_2r2rl侧面母线长侧面母线长rrl侧面母线长侧面母线长几何体几何体侧面展开图侧面展开

9、图侧面积公式侧面积公式圆台圆台S S圆台侧圆台侧=_=_r r1 1为上底面半径为上底面半径r r2 2为下底面半径为下底面半径l为为_直棱柱直棱柱S S直棱柱侧直棱柱侧=_=_c c为底面为底面_h为为_(r(r1 1+r+r2 2)l侧面母线长侧面母线长chch周长周长高高正棱锥正棱锥S S正棱锥侧正棱锥侧=_=_c c为底面为底面_hh为为_,即侧,即侧面等腰三角形的高面等腰三角形的高正棱台正棱台S S正棱台侧正棱台侧=_ _cc为上底面为上底面_c c为下底面为下底面_hh为为_,即侧,即侧面等腰梯形的高面等腰梯形的高12chch周长周长斜高斜高12(c+c)h(c+c)h周长周长周长

10、周长斜高斜高1 1(2014(2014陕西高考陕西高考)将边长为将边长为1 1的正方形以其一边的正方形以其一边所在的直线为旋转轴旋转一周所在的直线为旋转轴旋转一周,所得几何体的侧面积所得几何体的侧面积是是()A.4A.4 B.8B.8 C.2C.2 D.D.2.2.正四棱锥底面边长为正四棱锥底面边长为6,6,高是高是4 4,中截面把棱锥截成,中截面把棱锥截成一个小棱锥和一个棱台,则棱台的侧面积为一个小棱锥和一个棱台,则棱台的侧面积为_._.4545C C1:4:63.3.一个直角梯形上底、下底和高之比是一个直角梯形上底、下底和高之比是1 1:2:2:,将此,将此直角梯形以垂直于底的腰所在直线为

11、旋转轴,旋转一周直角梯形以垂直于底的腰所在直线为旋转轴,旋转一周形成一个圆台,则这个圆台上底面积、下底面积和侧面形成一个圆台,则这个圆台上底面积、下底面积和侧面积的比是积的比是_._.34.4.某几何体的三视图如图所示某几何体的三视图如图所示,该几何体的表面该几何体的表面积是积是_._.【解析解析】由三视图可由三视图可知知,原几何体是一个底原几何体是一个底面是直角梯形面是直角梯形,高为高为4 4的直四棱柱的直四棱柱,其底面积其底面积为为 28 ,28 ,侧面积为侧面积为64,64,故表面积为故表面积为92.92.92925 5一个圆柱的侧面展开图是一个正方形,求这个一个圆柱的侧面展开图是一个正方形,求这个圆柱的表面积与侧面积的比圆柱的表面积与侧面积的比【解析解析】设底面圆半径为设底面圆半径为r r,母线即高为,母线即高为h h所以所以h h2r2r.2表侧S2 r2 rhrhS2 rhhr2 r1 22 r2 不论做什么,请记住我的格言:笑容是良药,音乐是秘方,睡觉则可以让你忘掉一切.祝天天快乐!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(柱-锥-台的侧面展开与面积课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|