1、4.3 一次函数的图象第四章 一次函数第2课时 一次函数的图象和性质学习目标1.了解一次函数的图象与性质(重点)2.能灵活运用一次函数的图象与性质解答有关问题(难点)导入新课导入新课复习引入(1)什么叫一次函数?从解析式上看,一次函数与正比例函数有什么关系?(2)正比例函数的图象是什么?是怎样得到的?(3)正比例函数有哪些性质?是怎样得到这些性质的?正比例函数 解析式 y=kx(k0)性质:k0,y 随x 的增大而增大;k0,y 随 x 的增大而减小一次函数解析式 y=kx+b(k0)针对函数 y=kx+b,大家想研究什么?应该怎样研究?图象:经过原点和(1,k)的一条直线xyOk0k0 xy
2、O?讲授新课讲授新课一次函数的图象的画法一 在上一课的学习中,我们学会了正比例函数图象的画法,分为三个步骤列表描点连线 那么你能用同样的方法画出一次函数的图象吗?-3-3 -2-2 -1-15 54 43 32 21 1 o-2-2-3-3-4-4-5-5 2 2 3 3 4 4 5 5x xy y 1 1y=y=2x2x1 1描点、连线一次函数的图象一次函数的图象是什么?是什么?-1 -1 列表x x22110 01 12 2y=y=2x+12x+1 5 5 3 31 111330 1 2 3 4 5 6 7 8 9 100 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5 6
3、 7 8 9 100 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5 6 7 8 9 100 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5 6 7 8 9 100 1 2 3 4 50 1 2 3 4 5例1:画出一次函数y=2x1的图象几何画板:一次函数图象的画法.gsp总结归纳 一次函数y=kxb的图象也称为直线y=kxb.一次函数y=kxb的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一般过(0,b)和(1,k+b)或(,0)bkbkxy(0,b)(,0)kbO 用你认为最简单的方法画出下列函数的图象:(1)y=-2x
4、-1;(2)y=0.5x+1x01y=-2x-1y=0.5x+1-1-31y=-2x-1做一做1.5y=0.5x+1也可以先画直线 y=-2x与 y=0.5x,再分别平移它们,也能得到直线y=-2x-1与 y=0.5x+1.xy2O.活动:请大家用描点法在同一坐标系内画出一次函数y=x+2,y=x-2的图象.x-2-1012y=x+2y=x-20-31-42-23-140.y=x+2y=x-2思考:观察它们的图象有什么特点?y=xy=x+2y=x-2y2Ox2观察三个函数图象的平移情况:探究归纳 把一次函数y=x+2,y=x-2的图象与y=x比较,发现:1.这三个函数的图象形状都是 ,并且倾斜
5、程度 _2.函数y=x的图象经过原点,函数y=x+2的图象与y轴交于点 ,即它可以看作由直线y=x向 平移 个单位长度而得到函数y=x-2的图象与y轴交于点 ,即它可以看作由直线y=x向_ 平移_个单位长度而得到直线相同(0,2)上2(0,-2)下2 比较三个函数的解析式,相同,它们的图象的位置关系是 .自变量系数k平行 一次函数y=kx+b(k0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移 个单位长度得到(当b0时,向 平移;当b0时,向 平移).b下上思考:与x轴的交点坐标是什么?,0bk要点归纳(1)将直线y2x向上平移2个单位后所得图象对应的函数表达式为()Ay2x1
6、By2x2Cy2x1 Dy2x2(2)将正比例函数y6x的图象向上平移,则平移后所得图象对应的函数表达式可能是_(写出一个即可)练一练B y6x+3一次函数的性质二画一画1:在同一坐标系中作出下列函数的图象.131xy131xyxy31131xyxy31(1)(2)(3)-3O-223123-1-1-2xy1131xy思考:k,b的值跟图象有什么关系?xy31131xy131xy画一画2:在同一坐标系中作出下列函数的图象.(1)(2)(3)-3o-223123-1-1-2xy1xy31131xy131xy思考:k,b的值跟图象有什么关系?在一次函数y=kx+b中,当k0时,y的值随着x值的增大
7、而增大;当kk 0,b 0k 0,b 0k 0,b 0k 0,b 0k 0,b 00时,直线经过 一、二、四象限;b0时,直线经过一、二、三象限;b0,解得(2)由题意得1-2m0且m-10,即(3)由题意得1-2m0且m-10,解得1.一次函数y=x-2的大致图象为()CoyxoyxoyxyxoA B C D 当堂练习当堂练习 2.下列函数中,y的值随x值的增大而增大的函数是().A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2C 3.直线y=3x-2可由直线y=3x向 平移 单位得到.4.直线y=x+2可由直线y=x-1向 平移 单位得到.下2上35.点A(-1,y1)
8、,B(3,y2)是直线y=kx+b(k”或“6.已知一次函数y(3m-8)x1-m图象与 y轴交点在x轴下方,且y随x的增大而减小,其中m为整数,求m的值.解解:由题意得 ,解得38010mm81m3又m为整数,m2课堂小结课堂小结一次函数函数的图象和性质当k0时,y的值随x值的增大而增大;当k0,b0时,经过一、二、三象限;当k0,b0时,经过一、三、四象限;当k0时,经过 一、二、四象限;当k0,b0时,经过二、三、四象限.bk图象性质1.1 探索勾股定理第一章 勾股定理导入新课讲授新课当堂练习课堂小结第2课时 验证勾股定理1.学会用几种方法验证勾股定理(重点)2.能够运用勾股定理解决简单
9、问题(重点,难点)学习目标导入新课导入新课观察与思考 活动:请你利用自己准备的四个全等的直角三角形拼出以斜边为边长的正方形 有不同的拼法吗?讲授新课讲授新课勾股定理的验证一 据不完全统计,验证的方法有400多种,你有自己的方法吗?问题:上节课我们认识了勾股定理,你还记得它的内容吗?那么如何验证勾股定理呢?几何画板:勾股定理的多种证明演示.gsp双击图标aaaabbbbcccc方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行整式运算,从理论上验证了勾股定理 验证方法一:验证方法一:毕达哥拉斯证法大正方形的面积可以表示为 ;也可以表示为 .(a+b)2c2+4 ab(a+b)2=
10、c2+4 ab a2+2ab+b2=c2+2ab a2+b2=c21212cabcab 验证方法二:赵爽弦图验证方法二:赵爽弦图bcabc大正方形的面积可以表示为 ;也可以表示为 .c2=4 ab+(b-a)2 =2ab+b2-2ab+a2 =a2+b2 a2+b2=c2c24 ab+(b-a)21212bcabcaABCD如图,梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式,得化简,得2111()()2.222a b b aabc 222.abc 验证方法三:美国总统证法验证方法三:美国总统证法 abc青入青方青出青出青入青入朱入朱方朱出青朱出入图课外链接abcABCDEFO达芬
11、奇对勾股定理的证明AaBCbDEFOABCDEF 如图,过 A 点画一直线 AL 使其垂直于 DE,并交 DE 于 L,交 BC 于 M.通过证明BCFBDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与 矩形MLEC也等积,于是推得222ABACBC 欧几里得证明勾股定理推荐书目议一议ccbbaa观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2.勾股定理的简单应用二例1:我方侦查员小王在距离东西向公路400m处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s后,汽车与他相距500m
12、,你能帮小王计算敌方汽车的速度吗?公路公路BCA400m500m解:由勾股定理,得AB2=BC2+AC2,即 5002=BC2+4002,所以,BC=300.敌方汽车10s行驶了300m,那么它1h行驶的距离为300660=108000(m)即它行驶的速度为108km/h.练一练1.湖的两端有A、两点,从与A方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为()ABCA.50米 B.120米 C.100米 D.130米130120?AABC2.如图,太阳能热水器的支架AB长为90 cm,与AB垂直的BC长为120 cm.太阳能真空管AC有多长?解:在RtABC中,由勾股定
13、理,得 AC2=AB2+BC2,AC2=902+1202,AC=150(cm).答:太阳能真空管AC长150 cm.例2:如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA12km,BB14km,A1B18km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和解:作点B关于MN的对称点B,连接AB,交A1B1于P点,连BP.则APBPAPPBAB,易知P点即为到点A,B距离之和最短的点过点A作AEBB于点E,则AEA1B18km,BEAA1BB1246(km)由勾股定理,得BA2AE2BE28262,AB10(km)
14、即APBPAB10km,故出口P到A,B两村庄的最短距离和是10km.变式:如图,在一条公路上有A、B两站相距25km,C、D为两个小镇,已知DAAB,CB AB,DA=15km,CB=10km,现在要在公路边上建设一个加油站E,使得它到两镇的距离相等,请问E站应建在距A站多远处?DAEBC151025-x,25)AExEBx 解解:设设长长为为 千千米米则则长长为为(千千米米,由由题题意意得得:2222151025)xx (10 x 解解得得:10EA答答:站站应应建建在在距距 站站千千米米处处.当堂练习当堂练习1.在直角三角形中,满足条件的三边长可以是 (写出一组即可)【解析】答案不唯一,
15、只要满足式子a2+b2=c2即可.答案:3,4,5(满足题意的均可)2.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,阳光透过的最大面积是_.200m23.如图,一根旗杆在离地面9 m处折断,旗杆顶部落在离旗杆底部12 m处.旗杆原来有多高?12 m12 m9 m9 m解:设旗杆顶部到折断处的距离为x m,根据勾股定理得222912x,解得x=15,15+9=24(m).答:旗杆原来高24 m.4.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,AD=13m,B=ACD=
16、90小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?解:在RtABC中,由勾股定理,得 AC2=AB2+BC2,AC=5m,在RtACD中,由勾股定理,得 CD2=AD2AC2,CD=12m,S草坪=SRtABC+SRtACD=ABBC+ACDC =(34+512)=36 m2故需要的费用为36100=3600元2121215.如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.DABCEF解:在RtABF中,由勾股定理,得 BF2=AF2AB2=10282BF=6(cm).CF=BCBF=4.设
17、EC=x,则EF=DE=8x,在RtECF中,根据勾股定理,得 x2+42=(8x)2解得 x=3.所以EC的长为3 cm.探索勾股定理勾股定理的验证课堂小结课堂小结勾股定理的简单运用小魔方站作品小魔方站作品 盗版必究盗版必究语文语文附赠 中高考状元学习方法 前前 言言 高考状元是一个特殊的群体,在许多高考状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚宇宙里璀璨夺目人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我的星星那样遥不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们们每一个同学都一样平凡而普通,但他们有是不平凡不普通的,他们的不平凡之处有是不平凡不
18、普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有就是在学习方面有一些独到的个性,又有着一些共性,而这些对在校的同学尤其是着一些共性,而这些对在校的同学尤其是将参加高考的同学都有一定的借鉴意义。将参加高考的同学都有一定的借鉴意义。青春风采北京市文科状元北京市文科状元 阳光女孩阳光女孩-何旋何旋 高考总分:高考总分:692分分(含含20分加分分加分)语文语文131分分 数学数学145分分英语英语141分分 文综文综255分分毕业学校:北京二中毕业学校:北京二中报考高校:报考高校:北京大学光华管理学北京大学光华管理学院院来自北京二中,高考成绩672分,还有20分加分。“何旋给人最深的印象
19、就是她的笑声,远远的就能听见她的笑声。”班主任吴京梅说,何旋是个阳光女孩。“她是学校的摄影记者,非常外向,如果加上20分的加分,她的成绩应该是692。”吴老师说,何旋考出好成绩的秘诀是心态好。“她很自信,也很有爱心。考试结束后,她还问我怎么给边远地区的学校捐书”。班主任:我觉得何旋今天取得这样的成绩,我觉得,很重要的是,何旋是土生土长的北京二中的学生,二中的教育理念是综合培养学生的素质和能力。我觉得何旋,她取得今天这么好的成绩,一个来源于她的扎实的学习上的基础,还有一个非常重要的,我觉得特别想提的,何旋是一个特别充满自信,充满阳光的这样一个女孩子。在我印象当中,何旋是一个最爱笑的,而且她的笑特别感染人的。所以我觉得她很阳光,而且充满自信,这是她突出的这样一个特点。所以我觉得,这是她今天取得好成绩当中,心理素质非常好,是非常重要的。高考总分高考总分:711分分毕业学校毕业学校:北京八中北京八中语文语文139分分 数学数学140分分英语英语141分分 理综理综291分分报考高校:报考高校:北京大学光华管理学院北京大学光华管理学院北京市理科状元杨蕙心北京市理科状元杨蕙心