第三章场效应管g课件.ppt

上传人(卖家):晟晟文业 文档编号:5184378 上传时间:2023-02-16 格式:PPT 页数:49 大小:2.54MB
下载 相关 举报
第三章场效应管g课件.ppt_第1页
第1页 / 共49页
第三章场效应管g课件.ppt_第2页
第2页 / 共49页
第三章场效应管g课件.ppt_第3页
第3页 / 共49页
第三章场效应管g课件.ppt_第4页
第4页 / 共49页
第三章场效应管g课件.ppt_第5页
第5页 / 共49页
点击查看更多>>
资源描述

1、2 场效应管及其基本放大电路一、场效应管一、场效应管二、场效应管放大电路静态工作点的设置方法二、场效应管放大电路静态工作点的设置方法三、场效应管放大电路的动态分析三、场效应管放大电路的动态分析 场效应管是另一种具有正向受控作用的半导体器场效应管是另一种具有正向受控作用的半导体器件。它体积小、工艺简单,器件特性便于控制,是件。它体积小、工艺简单,器件特性便于控制,是目前制造大规模集成电路的主要有源器件。目前制造大规模集成电路的主要有源器件。场效应管输入电阻远大于三极管输入电阻。场效应管输入电阻远大于三极管输入电阻。场效应管是单极型器件(三极管是双极型器件)。场效应管是单极型器件(三极管是双极型器

2、件)。MOS场效应管场效应管结型场效应管结型场效应管P沟道(沟道(PMOS)N沟道(沟道(NMOS)P沟道(沟道(PMOS)N沟道(沟道(NMOS)增强型(增强型(EMOS)耗尽型(耗尽型(DMOS)N沟道沟道MOS管与管与P沟道沟道MOS管工作原理相似,不管工作原理相似,不同之处仅在于同之处仅在于它们形成电流的载流子性质不同,因它们形成电流的载流子性质不同,因此导致加在各极上的电压极性相反此导致加在各极上的电压极性相反。N+N+P+P+PUSGDq N沟道沟道EMOSFET结构示意图结构示意图源极源极漏极漏极衬底极衬底极 SiO2绝缘层绝缘层金属栅极金属栅极P P型硅型硅 衬底衬底SGUD电

3、路符号电路符号l沟道长度沟道长度W沟道沟道宽度宽度 N沟道沟道EMOS管管外部工作条件外部工作条件 VDS 0 (保证栅漏保证栅漏PN结反偏结反偏)。U接电路最低电位或与接电路最低电位或与S极相连极相连(保证源衬保证源衬PN结反偏结反偏)。VGS 0(形成导电沟道形成导电沟道)PP+N+N+SGDUVDS-+-+-+-+VGSq N沟道沟道EMOS管管工作原理工作原理栅栅 衬之间衬之间相当相当于以于以SiO2为介质为介质的平板电容器。的平板电容器。N沟道沟道EMOSFET沟道形成原理沟道形成原理 假设假设VDS=0,讨论,讨论VGS作用作用PP+N+N+SGDUVDS=0-+-+VGS形成空间

4、电荷区形成空间电荷区并与并与PN结相通结相通VGS 衬底表面层中衬底表面层中负离子负离子、电子、电子 VGS 开启电压开启电压VGS(th)形成形成N型导电沟道型导电沟道表面层表面层 npVGS越大,反型层中越大,反型层中n 越多,导电能力越强。越多,导电能力越强。反型层反型层 VDS对沟道的控制对沟道的控制(假设(假设VGS VGS(th)且保持不变)且保持不变)VDS很小时很小时 VGD VGS。此时此时W近似不变近似不变,即即Ron不变不变。由图由图 VGD=VGS-VDS因此因此 VDS ID线性线性 。若若VDS 则则VGD 近漏端沟道近漏端沟道 Ron增大增大。此时此时 Ron I

5、D 变慢。变慢。PP+N+N+SGDUVDS-+-+VGS-+-+PP+N+N+SGDUVDS-+-+VGS-+-+当当VDS增加到增加到使使VGD =VGS(th)时时 A点出现预夹断点出现预夹断 若若VDS 继续继续 A点左移点左移出现夹断区出现夹断区此时此时 VAS=VAG+VGS=-VGS(th)+VGS(恒定)(恒定)若忽略沟道长度调制效应,则近似认为若忽略沟道长度调制效应,则近似认为l 不变(即不变(即Ron不变)。不变)。因此预夹断后:因此预夹断后:PP+N+N+SGDUVDS-+-+VGS-+-+APP+N+N+SGDUVDS-+-+VGS-+-+AVDS ID 基本维持不变。

6、基本维持不变。若考虑沟道长度调制效应若考虑沟道长度调制效应则则VDS 沟道长度沟道长度l 沟道电阻沟道电阻Ron略略。因此因此 VDS ID略略。由上述分析可描绘出由上述分析可描绘出ID随随VDS 变化变化的关系曲线:的关系曲线:IDVDS0VGS VGS(th)VGS一定一定曲线形状类似三极管输出特性。曲线形状类似三极管输出特性。MOS管仅依靠一种载流子(多子)导电,故管仅依靠一种载流子(多子)导电,故称称单极型器件。单极型器件。三极三极管中多子、少子同时参与导电,故称管中多子、少子同时参与导电,故称双双极型器件。极型器件。利用半导体表面的电场效应,通过栅源电压利用半导体表面的电场效应,通过

7、栅源电压VGS的变化,改变感生电荷的多少,从而改变感的变化,改变感生电荷的多少,从而改变感生沟道的宽窄,控制漏极电流生沟道的宽窄,控制漏极电流ID。MOSFET工作原理:工作原理:由于由于MOS管栅极电流管栅极电流为零,故不讨论输入特为零,故不讨论输入特性曲线。性曲线。共源组态特性曲线:共源组态特性曲线:ID=f(VGS)VDS=常数常数转移特性:转移特性:ID=f(VDS)VGS=常数常数输出特性:输出特性:q 伏安特性伏安特性+TVDSIG 0VGSID+-转移特性与输出特性反映场效应管同一物理过程,转移特性与输出特性反映场效应管同一物理过程,它们之间可以相互转换。它们之间可以相互转换。N

8、EMOS管输出特性曲线管输出特性曲线q 非饱和区非饱和区特点:特点:ID同时受同时受VGS与与VDS的控制。的控制。当当VGS为常数时,为常数时,VDSID近似线性近似线性,表现为一种电阻特性;,表现为一种电阻特性;ID/mAVDS/V0VDS=VGS VGS(th)VGS=5V3.5V4V4.5V当当VDS为常数时,为常数时,VGS ID ,表现出一种压控电阻的特性。,表现出一种压控电阻的特性。沟道预夹断前对应的工作区。沟道预夹断前对应的工作区。条件:条件:VGS VGS(th)V DS VGS(th)V DS VGSVGS(th)考虑到沟道长度调制效应,输出特性曲线随考虑到沟道长度调制效应

9、,输出特性曲线随VDS的增加略有上翘。的增加略有上翘。注意:饱和区(又称有源区)对应三极管的放大区。注意:饱和区(又称有源区)对应三极管的放大区。数学模型:数学模型:若考虑沟道长度调制效应,则若考虑沟道长度调制效应,则ID的修正方程:的修正方程:工作在工作在饱和区时,饱和区时,MOS管的正向受控作用,服管的正向受控作用,服从平方律关系式:从平方律关系式:2GS(th)GSOXnD)(2VVlWCIADS2GS(th)GSOXnD1)(2VVVVlWCIDS2GS(th)GSOXn1)(2VVVlWC其中:其中:称称沟道长度调制系数,其值与沟道长度调制系数,其值与l 有关。有关。通常通常 =(0

10、.005 0.03)V-1q 截止区截止区特点:特点:相当于相当于MOS管三个电极断开。管三个电极断开。ID/mAVDS/V0VDS=VGS VGS(th)VGS=5V3.5V4V4.5V沟道未形成时的工作区沟道未形成时的工作区条件:条件:VGS VGS(th)ID=0=0以下的工作区域。以下的工作区域。IG0,ID0q 击穿区击穿区 VDS增大增大到一定值时到一定值时漏衬漏衬PN结雪崩击穿结雪崩击穿 ID剧增。剧增。VDS沟道沟道 l 对于对于l 较小的较小的MOS管管穿通击穿。穿通击穿。NEMOS管转移特性曲线管转移特性曲线VGS(th)=3VVDS=5V 转移特性曲线反映转移特性曲线反映

11、VDS为常数时,为常数时,VGS对对ID的控制作的控制作用用,可由输出特性转换得到。可由输出特性转换得到。ID/mAVDS/V0VDS=VGS VGS(th)VGS=5V3.5V4V4.5VVDS=5VID/mAVGS/V012345 转移特性曲线中转移特性曲线中,ID=0 时对应的时对应的VGS值值,即开启即开启电压电压VGS(th)。q P沟道沟道EMOS管管+-+-VGSVDS+-+-SGUDNN+P+SGDUP+N沟道沟道EMOS管与管与P沟道沟道EMOS管管工作原理相似。工作原理相似。即即 VDS 0、VGS 0,VGS 正、负、零均可。正、负、零均可。外部工作条件:外部工作条件:D

12、MOS管在饱和区与非饱和区的管在饱和区与非饱和区的ID表达式表达式与与EMOS管管相同相同。PDMOS与与NDMOS的差别仅在于电压极性与电流方向相反。的差别仅在于电压极性与电流方向相反。q 电路符号及电流流向电路符号及电流流向SGUDIDSGUDIDUSGDIDSGUDIDNEMOSNDMOSPDMOSPEMOSq 转移特性转移特性IDVGS0VGS(th)IDVGS0VGS(th)IDVGS0VGS(th)IDVGS0VGS(th)q 饱和区(放大区)外加电压极性及数学模型饱和区(放大区)外加电压极性及数学模型 VDS极性取决于沟道类型极性取决于沟道类型N沟道:沟道:VDS 0,P沟道沟道

13、:VDS|VGS(th)|,|VDS|VGS VGS(th)|VGS|VGS(th)|,q 饱和区(放大区)工作条件饱和区(放大区)工作条件|VDS|VGS(th)|,q 非饱和区(可变电阻区)数学模型非饱和区(可变电阻区)数学模型DSGS(th)GSOXnD)(VVVlWCIq JFET结构示意图及电路符号结构示意图及电路符号SGDSGDP+P+NGSDN沟道沟道JFETP沟道沟道JFETN+N+PGSDq N沟道沟道JFET管管外部工作条件外部工作条件 VDS 0(保证栅漏保证栅漏PN结反偏结反偏)VGS 0(保证栅源保证栅源PN结反偏结反偏)P+P+NGSD-+VGSVDS+-q VGS

14、对沟道宽度的影响对沟道宽度的影响|VGS|阻挡层宽度阻挡层宽度 若若|VGS|继续继续 沟道全夹断沟道全夹断使使VGS=VGS(off)夹断电压夹断电压若若VDS=0NGSD-+VGSP+P+N型沟道宽度型沟道宽度 沟道电阻沟道电阻Ron VDS很小时很小时 VGD VGS由图由图 VGD=VGS-VDS因此因此 VDS ID线性线性 若若VDS 则则VGD 近漏端沟道近漏端沟道 Ron增大增大。此时此时 Ron ID 变慢变慢q VDS对沟道的控制对沟道的控制(假设(假设VGS 一定一定)NGSD-+VGSP+P+VDS+-此时此时W近似不变近似不变即即Ron不变不变 当当VDS增加到增加到

15、使使VGD =VGS(off)时时 A点出现预夹断点出现预夹断 若若VDS 继续继续 A点下移点下移出现夹断区出现夹断区此时此时 VAS=VAG+VGS=-VGS(off)+VGS(恒定)(恒定)若忽略沟道长度调制效应,则近似认为若忽略沟道长度调制效应,则近似认为l 不变(即不变(即Ron不变)。不变)。因此预夹断后:因此预夹断后:VDS ID 基本维持不变。基本维持不变。NGSD-+VGSP+P+VDS+-ANGSD-+VGSP+P+VDS+-A 利用半导体内的电场效应,通过栅源电压利用半导体内的电场效应,通过栅源电压VGS的变化,改变阻挡层的宽窄,从而改变导电沟的变化,改变阻挡层的宽窄,从

16、而改变导电沟道的宽窄,控制漏极电流道的宽窄,控制漏极电流ID。JFET工作原理:工作原理:综上所述,综上所述,JFET与与MOSFET工作原理相似,工作原理相似,它们都是利用电场效应控制电流,不同之处仅它们都是利用电场效应控制电流,不同之处仅在于导电沟道形成的原理不同。在于导电沟道形成的原理不同。常量DS)(GSDUufi夹断夹断电压电压漏极饱漏极饱和电流和电流转移特性场效应管工作在恒流区,因而场效应管工作在恒流区,因而uGSUGS(off)且且uGDUGS(off)。uDGUGS(off)GS(off)GSDSUuu2GS(off)GSDSSD)1(UuIi在恒流区时常量GS)(DSDUuf

17、ig-s电压控电压控制制d-s的等的等效电阻效电阻输出特性常量DSGSDmUuig预夹断轨迹,预夹断轨迹,uGDUGS(off)可可变变电电阻阻区区恒恒流流区区iD几乎仅决几乎仅决定于定于uGS击击穿穿区区夹断区(截止区)夹断区(截止区)夹断电压夹断电压IDSSiD 不同型号的管子不同型号的管子UGS(off)、IDSS将不同。将不同。低频跨导:低频跨导:2.绝缘栅型场效应管 uGS增大,反型层(导电沟道)将变厚变长。当增大,反型层(导电沟道)将变厚变长。当反型层将两个反型层将两个N区相接时,形成导电沟道。区相接时,形成导电沟道。SiO2绝缘层绝缘层衬底衬底耗尽层耗尽层空穴空穴高掺杂高掺杂反型

18、层反型层增强型管增强型管大到一定大到一定值才开启值才开启增强型MOS管uDS对iD的影响 用场效应管组成放大电路时应使之工作在恒流区。用场效应管组成放大电路时应使之工作在恒流区。N沟道增强型沟道增强型MOS管工作在恒流区的条件是什么?管工作在恒流区的条件是什么?iD随随uDS的增的增大而增大,可大而增大,可变电阻区变电阻区 uGDUGS(th),预夹断预夹断 iD几乎仅仅几乎仅仅受控于受控于uGS,恒,恒流区流区刚出现夹断刚出现夹断uGS的增大几乎全部用的增大几乎全部用来克服夹断区的电阻来克服夹断区的电阻耗尽型 MOS管 耗尽型耗尽型MOS管在管在 uGS0、uGS 0、uGS 0时均可导时均

19、可导通,且与结型场效应管不同,由于通,且与结型场效应管不同,由于SiO2绝缘层的存在,在绝缘层的存在,在uGS0时仍保持时仍保持g-s间电阻非常大的特点。间电阻非常大的特点。加正离子加正离子小到一定小到一定值才夹断值才夹断uGS=0时就存在时就存在导电沟道导电沟道MOS管的特性1)增强型增强型MOS管管2)耗尽型耗尽型MOS管管开启开启电压电压夹断夹断电压电压DGS(th)GSDO2GS(th)GSDOD2)1(iUuIUuIi时的为式中在恒流区时,3.场效应管的分类工作在恒流区时工作在恒流区时g-s、d-s间的电压极性间的电压极性)0(P)0(N)00(P)00(N)00(P)00(NDSG

20、SDSGSDSGSDSGSDSGSDSGS极性任意,沟道极性任意,沟道耗尽型,沟道,沟道增强型绝缘栅型,沟道,沟道结型场效应管uuuuuuuuuuuuuGS=0可工作在恒流区的场效应管有哪几种?可工作在恒流区的场效应管有哪几种?uGS0才可能工作在恒流区的场效应管有哪几种?才可能工作在恒流区的场效应管有哪几种?uGS0才可能工作在恒流区的场效应管有哪几种?才可能工作在恒流区的场效应管有哪几种?q 场效应管与三极管性能比较场效应管与三极管性能比较 项目项目 器件器件电极名称电极名称工作区工作区导导电电类类型型输输入入电电阻阻跨跨导导三三极极管管e e极极b b极极c c极极放放大大区区饱饱和和区

21、区双双极极型型小小大大场效场效应管应管s s极极g g极极d d极极饱饱和和区区非饱非饱和区和区单单极极型型大大小小q MOS MOS管简化小信号电路模型管简化小信号电路模型(与三极管对照与三极管对照)gmvgsrdsgdsicvgs-vds+-rds为为场效应管场效应管输出电阻:输出电阻:由于场效应管由于场效应管IG 0,所以输入电阻所以输入电阻rgs。而三极管发射结正偏,而三极管发射结正偏,故输入电阻故输入电阻rb e较小。较小。)/(1CQceIr与三极管与三极管输出电阻表达式输出电阻表达式 相似。相似。)/(1DQdsIrrb ercebceibic+-+vbevcegmvb e MO

22、S管管跨导跨导QGSDmvig2GS(th)GSOXD)(2VVlWCI利用利用DQOXQGSDm22IlWCvig得得三极管三极管跨导跨导CQeQEBC5.38 Irvigm 通常通常MOS管的跨导比管的跨导比三极管的三极管的跨导要小一个跨导要小一个数量级以上,即数量级以上,即MOS管放大能力比三极管弱。管放大能力比三极管弱。q 计及衬底效应的计及衬底效应的MOS管简化电路模型管简化电路模型 考虑到衬底电压考虑到衬底电压vus对漏极电流对漏极电流id的控制作用,小信的控制作用,小信号等效电路中需增加一个压控电流源号等效电路中需增加一个压控电流源gmuvus。gmvgsrdsgdsidvgs-

23、vds+-gmuvusgmu称背栅跨导,称背栅跨导,工程上工程上mQusDmugvig 为常数,为常数,一般一般 =0.1 0.2q MOS管高频小信号电路模型管高频小信号电路模型 当高频应用、需计及管子极间电容影响时,应采当高频应用、需计及管子极间电容影响时,应采用如下高频等效电路模型。用如下高频等效电路模型。gmvgsrdsgdsidvgs-vds+-CdsCgdCgs栅源极间栅源极间平板电容平板电容漏源极间电容漏源极间电容(漏衬与(漏衬与源衬之间的势垒电容)源衬之间的势垒电容)栅漏极间栅漏极间平板电容平板电容q 小信号等效电路法小信号等效电路法场效应管小信号等效电路分法与三极管相似。场效

24、应管小信号等效电路分法与三极管相似。利用微变等效电路分析交流指标。利用微变等效电路分析交流指标。画交流通路画交流通路 将将FETFET用小信号电路模型代替用小信号电路模型代替 计算微变参数计算微变参数gm、rds注:具体分析将在第四章中详细介绍。注:具体分析将在第四章中详细介绍。二、场效应管放大电路静态工作点的设置方法二、场效应管放大电路静态工作点的设置方法(1 1)分压偏置电路)分压偏置电路 Q点估算:点估算:电路特点电路特点:分压偏置电路不仅适用于三极管,同时适分压偏置电路不仅适用于三极管,同时适用于各种类型的场效应管。用于各种类型的场效应管。VDDTSRG1RG2RDRSGIDSDQG2

25、G1DDG2GSQRIRRVRV2GS(th)GSQOXDQ)(2VVlWCI)(SDDQDDDSQRRIVV(2 2)自偏置电路)自偏置电路 Q点估算:点估算:电路特点电路特点:故自偏置电路只适合于耗尽型故自偏置电路只适合于耗尽型场效应管场效应管VDDSRGRDRSGIDSDQGSQ0RIV)(SDDQDDDSQRRIVV2GS(off)GSQDSSDQ1VVII 由于由于VDS与与VGS极性始终相反极性始终相反 例如:例如:JFET、DMOS管管(3 3)零偏置电路)零偏置电路 Q点估算:点估算:电路特点电路特点:由于由于VGS=0,故零偏置电路只适合耗尽型故零偏置电路只适合耗尽型MOS管

26、。管。0GSQV)(SDDQDDDSQRRIVVVDDSRGRDGID2GS(th)GSQOXDQ)(2VVlWCI由于由于RS=0,故该电路不具有稳定故该电路不具有稳定Q点的功能点的功能。q 共源放大器共源放大器GiRR dsDO/rRR 场效应管电路性能特点、分析方法与三极管放大器相似。场效应管电路性能特点、分析方法与三极管放大器相似。不同之处仅在于,不同之处仅在于,FET管的管的ig g=0=0。RDRGvs+-RL+-voRS+-vigsLogsm)/(vRRvgvvAiov)/(LomRRggmvgsRDRGvs+-RL+-voRS+-virdsgsRi iRo o三、场效应管放大电

27、路的动态分析三、场效应管放大电路的动态分析q 共栅放大器共栅放大器vs+-RL+-voR SRSRDvi+-iiiivRmgsmgs1gvgvvs+-RL+-voR SRSRDgmvgsiiio+-vigsRi i i因为因为mSgRR1/i所以所以gsLDgsm)/(vRRvgvvAiov)/(LDmRRgDoRR 而而q 共漏放大器共漏放大器RGvs+-RL+-voRS+-viR SgR SRGvs+-RL+voRS+-virds-gmvgssGiRR mSO1/gRR)/()/(LSgsmgsLSgsmRRvgvRRvgvvAiov经推导经推导)/(1)/(LSmLSmRRgRRgFETFET三种组态电路性能比较三种组态电路性能比较GRmS1/gRGR小小大大DR小小大大大大 1DR大大大大大大RDRGvs+-RL+-voRS+-viR Svs+-RL+-voR SRSRDvi+-RGvs+-RL+-voRS+-viR SmS1/gRSmLm1RgRgLmRg)/(1)/(LSmLSmRRgRRg共源共源共栅共栅共漏共漏RiRoAv

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第三章场效应管g课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|