1、第一课时第二课时第三课时人教版人教版 数学数学 九九年级年级 上册上册第一课时返回视频http:/ 排球运动员从地面竖直向上抛出排球,排球运动员从地面竖直向上抛出排球,排球的高度排球的高度 h(单位:(单位:m)与排球的运动时间)与排球的运动时间 t(单(单位:位:s)之间的关系式是)之间的关系式是h=20t-5t 2(0t4)排球的运动时间是多少时,排球最高?排球运动中排球的运动时间是多少时,排球最高?排球运动中的最大高度是多少?的最大高度是多少?0ht4导入新知导入新知【思考思考】素养目标素养目标2.会应用会应用二次函数的性质二次函数的性质解决实际问题解决实际问题.1.掌握掌握几何问题中的
2、相等关系的寻找方几何问题中的相等关系的寻找方法,并会应用函数关系式求法,并会应用函数关系式求图形面积图形面积的的最值最值.从从地面竖直向上抛出一小球,小球的高度地面竖直向上抛出一小球,小球的高度 h(单位:(单位:m)与小球的运动时间)与小球的运动时间 t(单位:(单位:s)之间的关系式是)之间的关系式是 h=30t-5t 2(0t6)小球的运动时间是多少时,小球最)小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?高?小球运动中的最大高度是多少?二次函数与几何图形面积的最值二次函数与几何图形面积的最值t/sh/mO1 2 3 4 5 62040h=30t-5t 2 可可以看出,这
3、个函数的图象是一条以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是这抛物线的一部分,这条抛物线的顶点是这个函数的图象的最高点个函数的图象的最高点.也就是说,也就是说,当当t取取顶点的横坐标时,这个函数有最大值顶点的横坐标时,这个函数有最大值.知识点 1探究新知探究新知 由于抛物线由于抛物线 y=ax 2+bx+c 的的顶点是最低(高)顶点是最低(高)点,当点,当 时,时,二次函数二次函数 y=ax 2+bx+c 有最小有最小(大)(大)值值2bxa 244acbya【想一想想一想】如如何求出二次函数何求出二次函数 y=ax 2+bx+c 的最小(大)值?的最小(大)值?探究新知探
4、究新知【分析分析】小球运动的时间是小球运动的时间是 3s 时,小球时,小球最高最高;小球小球运动运动中的最大高度是中的最大高度是 45 m303225bta (),2243045445acbha()t/sh/mO1 2 3 4 5 62040h=30t-5t 2 探究新知探究新知解:解:一般地,当一般地,当a0(a0)时,抛物线时,抛物线 y=ax2+bx+c的顶点是的顶点是最低(高)点,也就是说,当最低(高)点,也就是说,当x=时,二次函数有时,二次函数有最小最小(大)值(大)值 .2ba 244ac ba 例例1 用总长为用总长为60m的篱笆围成矩形场地,矩形面的篱笆围成矩形场地,矩形面积
5、积S随矩形一边长随矩形一边长l的变化而变化的变化而变化.当当l是多少时,场是多少时,场地的面积地的面积S最大?最大?问题问题1 矩形面积公式是什么?矩形面积公式是什么?问题问题2 如何用如何用l表示另一边?表示另一边?问题问题3 面积面积S的函数关系式是什么?的函数关系式是什么?素养考点素养考点1利用二次函数求几何图形的面积的最值利用二次函数求几何图形的面积的最值素养考点素养考点 1探究新知探究新知 用总长为用总长为60m的篱笆围城一个矩形场地,矩形面积的篱笆围城一个矩形场地,矩形面积S随矩随矩形一边长形一边长l的变化而变化的变化而变化.当当l是是多少米时,场地的面积多少米时,场地的面积S最大
6、?最大?lS解:解:602l()场地的面积场地的面积S=l(30-l)即即S=-l2+30l(0l30)301522(1)bla 22430225.44(1)acba即当即当l是是15m时时,场地的面积场地的面积S最大最大.探究新知探究新知矩形矩形场地的周长是场地的周长是60m,一边长为一边长为lm,所以另一边长为所以另一边长为 m.因此,当因此,当 时,时,S有最大值有最大值 方法点拨方法点拨利利用二次函数解决几何图形中的最值问题的要点:用二次函数解决几何图形中的最值问题的要点:1.根据面积公式、周长公式、勾股定理等建立函数关系根据面积公式、周长公式、勾股定理等建立函数关系式;式;2.确定自
7、变量的取值范围;确定自变量的取值范围;3.根据开口方向、顶点坐标和自变量的取值范围画草图;根据开口方向、顶点坐标和自变量的取值范围画草图;4.根据草图求所得函数在自变量的允许范围内的最大值根据草图求所得函数在自变量的允许范围内的最大值或最小值或最小值.探究新知探究新知变式变式1 如图,用一段长为如图,用一段长为60m的篱笆围成一个一边靠的篱笆围成一个一边靠墙的矩形菜园,墙长墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?时,菜园的面积最大,最大面积是多少?xx60-2x问题问题2 我们可以设面积为我们可以设面积为S,如何设自变量?
8、,如何设自变量?问题问题3 面积面积S的函数关系式是什么?的函数关系式是什么?问题问题1 变式变式1与例题有什么不同?与例题有什么不同?Sx(602x)2x260 x.设垂直于墙的边长为设垂直于墙的边长为x米米探究新知探究新知问题问题4 如何如何求解自变量求解自变量x的取值范围?墙长的取值范围?墙长32m对此对此题有什么作用?题有什么作用?问题问题5 如何如何求最值?求最值?最值在其顶点处,即当最值在其顶点处,即当x=15m时,时,S=450m2.0602x32,即,即14x30.探究新知探究新知变式变式2 如图,用一段长为如图,用一段长为60m的篱笆围成一个一边靠墙的矩的篱笆围成一个一边靠墙
9、的矩形菜园,墙长形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?面积最大,最大面积是多少?x问题问题1 变式变式2与变式与变式1有什么异同?有什么异同?问题问题2 可否模仿变式可否模仿变式1设未知数、列函数关系式?设未知数、列函数关系式?问题问题3 可否试设与墙平行的一边为可否试设与墙平行的一边为x米?则如米?则如何表示另一边与面积?何表示另一边与面积?答案:答案:设矩形面积为设矩形面积为Sm2,与墙平行的一边为与墙平行的一边为x米,则米,则22601130(30)450222xSxxxx 探究新知探究新知问题问题4 当当x=
10、30时,时,S取最大值,此结论是否正确?取最大值,此结论是否正确?问题问题5 如何求自变量的取值范围?如何求自变量的取值范围?0 x 18.问题问题6 如何求最值?如何求最值?由于由于30 18,因此只能利用函数的增减性求其最,因此只能利用函数的增减性求其最值值.当当x=18时,时,S有最大值是有最大值是378.不正确不正确.探究新知探究新知 方法点拨 实实际问题中求解二次函数最值问题,际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的不一定都取图象顶点处,要根据自变量的取值范围取值范围.通过变式通过变式1与变式与变式2的对比,希望的对比,希望同学们能够理解函数图象的同学们能够
11、理解函数图象的顶点顶点、端点与端点与最值的关系最值的关系,以及,以及何时取顶点处何时取顶点处、何时取何时取端点处端点处才有符合实际的最值才有符合实际的最值.探究新知探究新知 已知已知直角三角形两条直角边的和等于直角三角形两条直角边的和等于8,两条直角边各,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?为多少时,这个直角三角形的面积最大,最大值是多少?巩固练习巩固练习1.解:解:直角三角形两直角边之和为直角三角形两直角边之和为8,设一边长设一边长x 另一边长为另一边长为8-x.则该直角三角形面积:则该直角三角形面积:即:即:当当S有最大值有最大值 当当 时,直角三角形面积最大,最
12、大值为时,直角三角形面积最大,最大值为8.S=(8-x)x2x=4,另一边为另一边为4时时244acba8两直角边两直角边都是都是42142Sxx 2ba 如如图,在足够大的空地上有一段长为图,在足够大的空地上有一段长为a米的旧墙米的旧墙MN,某人,某人利用旧墙和木栏围成一个矩形菜园利用旧墙和木栏围成一个矩形菜园ABCD,其中,其中ADMN,已,已知矩形菜园的一边靠墙,另三边一共用了知矩形菜园的一边靠墙,另三边一共用了100米木栏米木栏 (1)若)若a=20,所围成的矩形菜园的面积为,所围成的矩形菜园的面积为450平方米,求平方米,求所利用旧墙所利用旧墙AD的长的长;连 接 中 考连 接 中
13、考巩固练习巩固练习解解:设设AB=xm,则,则BC=(1002x)m,根据根据题意得题意得x(1002x)=450,解得,解得x1=5,x2=45;当当x=5时,时,1002x=9020,不合题意舍去;不合题意舍去;当当x=45时,时,1002x=10,答:答:AD的长为的长为10m;解:解:设设AD=xm,S=x(100 x)=(x50)2+1250,当当a50时,则时,则x=50时,时,S的最大值为的最大值为1250;当当0a50时,则当时,则当0 xa时,时,S随随x的增大而增的增大而增大;大;当当x=a时,时,S的最大值为的最大值为50aa2,综上所述,综上所述,当当a50时,时,S的
14、最大值为的最大值为1250;当当0a50时,时,S的最大值为的最大值为50a a2巩固练习巩固练习(2)求矩形菜园)求矩形菜园ABCD面积的最大值面积的最大值连 接 中 考连 接 中 考1.用用一段长为一段长为15m的篱笆围成一个一边靠墙的的篱笆围成一个一边靠墙的矩形菜园,墙长为矩形菜园,墙长为18m,这个矩形菜园的最大,这个矩形菜园的最大面积是面积是_.2225m8基 础 巩 固 题基 础 巩 固 题课堂检测课堂检测2.如图如图1,在,在ABC中,中,B=90,AB=12cm,BC=24cm,动点动点P从点从点A开始沿开始沿AB向向B以以2cm/s的速度移动(不与点的速度移动(不与点B重合)
15、,动重合),动点点Q从点从点B开始开始BC以以4cm/s的速度移动(不与点的速度移动(不与点C重合)重合).如果如果P、Q分别从分别从A、B同时出发,那么经过同时出发,那么经过 秒,四边形秒,四边形APQC的面的面积最小积最小.3ABCPQ图图1课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题1.如如图,点图,点E、F、G、H分别位于正方形分别位于正方形ABCD的四条边的四条边上,四边形上,四边形EFGH也是正方形,当点也是正方形,当点E位于何处时,正方位于何处时,正方形形EFGH的面积最小?的面积最小?解:解:令令AB长为长为1,设设DH=x,正方形正方形EFGH的面的面积为积为y,则则
16、DG=1-x.即即当当E位于位于AB中点时,中点时,正方形正方形EFGH面积最小面积最小.2211114(1)2(01)222yxxxx 11,.22xy 当时有最小值能 力 提 升 题能 力 提 升 题课堂检测课堂检测2.某小区在一块一边靠墙某小区在一块一边靠墙(墙长墙长25m)的空地上修建一个矩形的空地上修建一个矩形绿化带绿化带ABCD,绿化带一边靠墙,绿化带一边靠墙,另三边用总长为另三边用总长为40m的栅的栅栏围住设绿化带的边长栏围住设绿化带的边长BC为为xm,绿化带的面积为,绿化带的面积为ym(1)求求y与与x之间的函数关系式,并写出自变量的取值范围之间的函数关系式,并写出自变量的取值
17、范围.40(1)()2xyx课堂检测课堂检测能 力 提 升 题能 力 提 升 题解:解:224012022xxxx2120(025)2yxxx 即即(2)当当x为何值时,满足条件的绿化带的面积最大?为何值时,满足条件的绿化带的面积最大?xxy202122)()40(212xx)202040(21222xx200)20(212xmax20200 xy=当时,满足条件的绿化带面积025xQ课堂检测课堂检测解:解:能 力 提 升 题能 力 提 升 题 某某广告公司设计一幅周长为广告公司设计一幅周长为12m的矩形广告牌,的矩形广告牌,广告设计费用每平方米广告设计费用每平方米1000元,设矩形的一边长为
18、元,设矩形的一边长为x(m),面积为面积为S(m2).(1)写出写出S与与x之间的关系式,并写出自变量之间的关系式,并写出自变量x的取的取值范围;值范围;解解:(1)设矩形一边长为设矩形一边长为x,则另一边长为(,则另一边长为(6-x),S=x(6-x)=-x2+6x,其中其中0 x 0,Q随随x的增大而增大的增大而增大 当当x最大最大=50时,时,Q最大最大=1200 答:答:此时每月的此时每月的总利润最多是总利润最多是1200元元.限定取值范围中如何确定最大利润限定取值范围中如何确定最大利润素养考点素养考点 2探究新知探究新知 (2)当售价在)当售价在5070元时,每月销售量与售价的关系如
19、图元时,每月销售量与售价的关系如图所示,则此时当该商品售价所示,则此时当该商品售价x是多少元时,该商店每月获利最大,是多少元时,该商店每月获利最大,最大利润是多少元?最大利润是多少元?解解:当当50 x70时时,设设y与与x函数关系式为函数关系式为y=kx+b,线段过线段过(50,60)和和(70,20).50k+b=6070k+b=20 y=2x+160(50 x70)解得:解得:k=2b=160探究新知探究新知Q=(x30)y =(x30)(2x+160)=2x2+220 x 4800 =2(x55)2+1250(50 x70)a=20,图象开口向下,图象开口向下,当当x=55时,时,Q最
20、大最大=1250当售价在当售价在5070元时,售价元时,售价x是是55元时,获利最大,元时,获利最大,最大利润是最大利润是1250元元.探究新知探究新知解:解:当当40 x50时,时,Q最大最大=12001218 当当50 x70时,时,Q最大最大=12501218 售价售价x应在应在5070元之间元之间.因此令:因此令:2(x55)2+1250=1218 解得:解得:x1=51,x2=59 当当x1=51时,时,y1=2x+160=251+160=58(件件)当当x2=59时,时,y2=2x+160=259+160=42(件件)若若4月份该商品销售后的总利润为月份该商品销售后的总利润为121
21、8元,则该商品售价元,则该商品售价为为51元或元或59元,元,当月的销售量分别为当月的销售量分别为58件或件或42件件.(3)若)若4月份该商品销售后的总利润为月份该商品销售后的总利润为1218元,则该元,则该商品售价与当月的销售量各是多少?商品售价与当月的销售量各是多少?探究新知探究新知变式:变式:(1)若该商品售价在若该商品售价在4070元之间变化,根据例题的分析、元之间变化,根据例题的分析、解答,直接写出每月总利润解答,直接写出每月总利润Q与售价与售价x的函数关系式;并说明,当该的函数关系式;并说明,当该商品售价商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?是多少元时,该商
22、店每月获利最大,最大利润是多少元?解:解:Q与与x的函数关系式为:的函数关系式为:60 x1800 (40 x50)2(x55)2+1250(50 x70)Q=由由例例3可知:可知:若若40 x50,则则当当x=50时,时,Q最大最大=1200若若50 x70,则则当当x=55时,时,Q最大最大=125012001250售价售价x是是55元时,获利最大,最大利润是元时,获利最大,最大利润是1250元元.探究新知探究新知 (2)若该商店销售该商品所获利润不低于若该商店销售该商品所获利润不低于1218元,元,试确定该商品的售价试确定该商品的售价x的取值范围;的取值范围;解:解:当当40 x50时时
23、,Q最大最大=12001218,此情况不存在此情况不存在.60 x1800 (40 x50)2(x55)2+1250(50 x70)Q=探究新知探究新知 当当50 x70时时,Q最大最大=12501218,令令Q=1218,得得 2(x55)2+1250=1218 解得解得:x1=51,x2=59 由由Q=2(x55)2+1250的图的图象和性质可知象和性质可知:当当51x59时时,Q1218因此若该商品所获利润不低于因此若该商品所获利润不低于1218元,元,则则售价售价x的取值范围为的取值范围为51x59.xQ055121859511250(3)在()在(2)的条件下,已知该商店采购这种新商
24、品的进货款)的条件下,已知该商店采购这种新商品的进货款不低于不低于1620元,则售价元,则售价x为多少元时,利润最大,最大利润是为多少元时,利润最大,最大利润是多少元?多少元?解:解:由题意由题意得得51x5930(2 x+160)1620 解得:解得:51x53Q=2(x55)2+1250的顶的顶点点 不不在在51x53范围内,范围内,又又a=20,当当51x53时时,Q随随x的增大而增大的增大而增大当当x最大最大=53时,时,Q最大最大=1242此时售价此时售价x应定为应定为53元元,利润,利润最大,最大利润是最大,最大利润是1242元元.xQ05512425351探究新知探究新知 某某商
25、店购进一种单价为商店购进一种单价为40元的篮球,如果以元的篮球,如果以单价单价50元售元售出,那么每月可售出出,那么每月可售出500个,据销售经验,售价每提高个,据销售经验,售价每提高1元,元,销售量相应减少销售量相应减少10个个.(1)假设销售单价提高假设销售单价提高x元,那么销售每个篮球所获得的利润元,那么销售每个篮球所获得的利润是是_元,这种篮球每月的销售量是元,这种篮球每月的销售量是 个个(用用x的代的代数式表示数式表示)(2)8000元是否为每月销售篮球的最大利润元是否为每月销售篮球的最大利润?如果是,说明理由,如果不是,请求出最大月利润如果是,说明理由,如果不是,请求出最大月利润,
26、此此时篮球时篮球的售价应定为多少元的售价应定为多少元?x+10500 10 x 8000元不是每月最大利润,最大月利润为元不是每月最大利润,最大月利润为9000元,元,此时篮球的售价为此时篮球的售价为70元元.巩固练习巩固练习2.某某景区商店销售一种纪念品,每件的进货价为景区商店销售一种纪念品,每件的进货价为40元经市场调研,当该元经市场调研,当该纪念品每件的销售价为纪念品每件的销售价为50元时,每天可销售元时,每天可销售200件;当每件的销售价每增加件;当每件的销售价每增加1元,每天的销售数量将减少元,每天的销售数量将减少10件件(1)当每件的销售价为)当每件的销售价为52元时,该纪念品每天
27、的销售数量为元时,该纪念品每天的销售数量为_件;件;(2)当每件的销售价)当每件的销售价x为多少时,销售该纪念品每天获得的利润为多少时,销售该纪念品每天获得的利润y最大?并最大?并求出最大利润求出最大利润解解:(1)由题意)由题意得:得:20010(5250)=20020=180(件(件),),(2)由题意得:)由题意得:y=(x40)20010(x50)=10 x2+1100 x28000 =10(x55)2+2250每件销售价为每件销售价为55元元时,获得最大利润;时,获得最大利润;最大利润为最大利润为2250元元巩固练习巩固练习连 接 中 考连 接 中 考1801.某种某种商品每件的进价
28、为商品每件的进价为20元,调查表明:在某元,调查表明:在某段时间内若以每件段时间内若以每件x元(元(20 x 30)出售,可卖出出售,可卖出(30020 x)件,使利润最大,则每件售价应定)件,使利润最大,则每件售价应定为为 元元.25课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题2.进进价为价为80元的某件定价元的某件定价100元时,每月可卖出元时,每月可卖出2000件,件,价格每上涨价格每上涨1元,销售量便减少元,销售量便减少5件,那么每月售出衬件,那么每月售出衬衣的总件数衣的总件数y(件)与衬衣售价件)与衬衣售价x(元元)之间的函数关系式之间的函数关系式为为 .每月利润每月利润w(
29、元元)与衬衣售价与衬衣售价x(元元)之间的函数关系式之间的函数关系式为为.(以上以上关系式只列式不化简)关系式只列式不化简).y=2000-5(x-100)w=2000-5(x-100)(x-80)课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题 一一工艺师生产的某种产品按质量分为工艺师生产的某种产品按质量分为9个档次个档次.第第1档次(最低档次)的产品一天能生产档次(最低档次)的产品一天能生产80件,每件,每件可获利润件可获利润12元元.产品每提高一个档次,每件产品产品每提高一个档次,每件产品的利润增加的利润增加2元,但一天产量减少元,但一天产量减少4件件.如果只从生如果只从生产利润这一
30、角度考虑,他生产哪个档次的产品,产利润这一角度考虑,他生产哪个档次的产品,可获得最大利润?可获得最大利润?课堂检测课堂检测能 力 提 升 题能 力 提 升 题w=12+2(x1)804(x1)=(10+2x)(844x)=8x2+128x+840=8(x8)2+1352.解:解:设生产设生产x档次的产品时,每天所获得的利润为档次的产品时,每天所获得的利润为w元,元,则则当当x=8时,时,w有最大值,且有最大值,且w最大最大=1352.答:答:该工艺师生产第该工艺师生产第8档次产品,可使利润最大档次产品,可使利润最大,最大,最大利利润为润为1352元元.课堂检测课堂检测能 力 提 升 题能 力
31、提 升 题xy516O7 某种某种商品每天的销售利润商品每天的销售利润y(元)与销售单价(元)与销售单价x(元)之间满元)之间满足关系:足关系:y=ax+bx-75.其图象如图其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?最大利润是多少元?解:解:由图可以看出:二次函数由图可以看出:二次函数y=ax+bx-75过点(过点(5,0),(),(7,16)将两点坐标代入解析式即可求得:将两点坐标代入解析式即可求得:(1)y=-x2+20 x-75,即,即y=-(x-10)2+25-10,对称轴对称轴x=10,当当
32、x=10时,时,y值最大,最大值为值最大,最大值为25.即销售单价定为即销售单价定为10元时,销售利润元时,销售利润最大最大,为,为25元;元;课堂检测课堂检测拓 广 探 索 题拓 广 探 索 题 (2)销售单价在什么范围时,该种商品每天的销售)销售单价在什么范围时,该种商品每天的销售利润不低于利润不低于16元?元?(2)显然,当显然,当y=16时,时,x=7和和13.因为因为函数函数y=-x+20 x-75图象的对称轴为图象的对称轴为x=10,因此因此,点(,点(7,16)关于对称轴的对称点为()关于对称轴的对称点为(13,16)故故销售单价在销售单价在7 x 13时,利润不低于时,利润不低
33、于16元元.课堂检测课堂检测拓 广 探 索 题拓 广 探 索 题解:解:最大利最大利润问题润问题建立函数建立函数关系式关系式总利润总利润=单件利润单件利润销售量或销售量或总利润总利润=总售价总售价-总成本总成本.确定自变量确定自变量取值范围取值范围涨价涨价:要保证销售量要保证销售量0;降件:要保证单件利润降件:要保证单件利润0.确定最大确定最大利润利润利用配方法或公式求最大值利用配方法或公式求最大值或利用函数简图和性质求出或利用函数简图和性质求出.课堂小结课堂小结第三课时返回导入新知导入新知 如如图是一个二次函数的图象,现在请你根据给出图是一个二次函数的图象,现在请你根据给出的坐标系的位置,说
34、出这个二次函数的解析式类型的坐标系的位置,说出这个二次函数的解析式类型.xyxyxy(1)y=ax2(2)y=ax2+k(3)y=a(x-h)2+k(4)y=ax2+bx+cOOO导入新知导入新知3.能运用能运用二次函数二次函数的图象与性质进行的图象与性质进行决策决策1.掌握掌握二次函数模型二次函数模型的建立,会把实际问题转的建立,会把实际问题转化为二次函数问题化为二次函数问题 2.利用利用二次函数二次函数解决解决拱桥拱桥及运动中的有关问题及运动中的有关问题素养目标素养目标 如图,一座拱桥的纵截面是抛物线的一部分,拱桥的跨度是如图,一座拱桥的纵截面是抛物线的一部分,拱桥的跨度是4.9米,水面宽
35、是米,水面宽是4米时,拱顶离水面米时,拱顶离水面2米米.现在想了解水面宽度变化现在想了解水面宽度变化时,拱顶离水面的高度怎样变化时,拱顶离水面的高度怎样变化你能想出办法来吗?你能想出办法来吗?建立平面直角坐标系解答抛物线形问题建立平面直角坐标系解答抛物线形问题探究新知探究新知知识点 1建立函数模型建立函数模型.这是什么样的函数呢?这是什么样的函数呢?拱桥的纵截面是抛物线,所拱桥的纵截面是抛物线,所以应当是个二次函数以应当是个二次函数.你能想出办法来吗?你能想出办法来吗?探究新知探究新知【合作探究合作探究】怎样建立直角坐标系比较简单呢?怎样建立直角坐标系比较简单呢?以拱顶为原点,抛物线的对称轴以
36、拱顶为原点,抛物线的对称轴为为y轴,建立直角坐标系,如图轴,建立直角坐标系,如图从图看出,什么形式的二次函数,它从图看出,什么形式的二次函数,它的图象是这条抛物线呢?的图象是这条抛物线呢?由于顶点坐标系是由于顶点坐标系是(0.0),),因因此这个二次函数的形式为此这个二次函数的形式为2ya x探究新知探究新知-2-421-2-1A如何确定如何确定a是多少?是多少?已知水面宽已知水面宽4米时,拱顶离水面米时,拱顶离水面高高2米,因此点米,因此点A(2,-2)在抛在抛物线上,由此得出物线上,由此得出因此,因此,其中,其中 x是水面宽度的一半,是水面宽度的一半,y是拱顶是拱顶离水面高度的相反数,这样
37、我们就可以了解到水面宽度变化离水面高度的相反数,这样我们就可以了解到水面宽度变化时,拱顶离水面高度怎样变化时,拱顶离水面高度怎样变化212yx222a g12 a解得解得探究新知探究新知由于拱桥的跨度为由于拱桥的跨度为4.9米,因此自变量米,因此自变量x的取值范围是:的取值范围是:水面宽水面宽3m时时 从而从而因此拱顶离水面高因此拱顶离水面高1.125m32x21391.125228y2.452.45x现在你能求出水面宽现在你能求出水面宽3米时,拱顶离水面高多少米吗?米时,拱顶离水面高多少米吗?探究新知探究新知 建立建立二次函数模型解决实际问题的基本二次函数模型解决实际问题的基本步骤步骤是什么
38、是什么?实际问题建立二次函数模型利用二次函数的图象和性质求解实际问题的解探究新知探究新知建立二次函数模型解决实际问题建立二次函数模型解决实际问题例例1 图中是抛物线形拱桥,当水面在图中是抛物线形拱桥,当水面在 时,拱顶离水时,拱顶离水面面2m,水面宽,水面宽4m,水面下降,水面下降1m时,水面宽度增加时,水面宽度增加了多少?了多少?建立坐标系解答生活中的抛物线形问题建立坐标系解答生活中的抛物线形问题素养考点素养考点 1探究新知探究新知解法一解法一:如图所示以抛物线的顶点为原点,以抛物线的对称轴为如图所示以抛物线的顶点为原点,以抛物线的对称轴为y轴,建轴,建立平面直角坐标系立平面直角坐标系.可设
39、这条抛物线所表示的二次函数的解析式为可设这条抛物线所表示的二次函数的解析式为y=ax2当拱桥离水面当拱桥离水面2m时时,水面宽水面宽4m即抛物线过点即抛物线过点(2,-2)这条抛物线所表示的二次函数为这条抛物线所表示的二次函数为y=-0.5x2.-2=a22a=-0.5当水面下降当水面下降1m时时,水面的纵坐标为水面的纵坐标为y=-3,这时有这时有:探究新知探究新知解法二解法二:如图所示如图所示,以抛物线和水面的两个交点的连线为以抛物线和水面的两个交点的连线为x轴,以抛物轴,以抛物线的对称轴为线的对称轴为y轴,建立平面直角坐标系轴,建立平面直角坐标系.因此可设这条抛物线所表示因此可设这条抛物线
40、所表示的二次函数的二次函数的解析式为的解析式为:y=ax+2.此时此时,抛物线的顶点为抛物线的顶点为(0,2)当拱桥离水面当拱桥离水面2m时时,水面宽水面宽4m即即:抛物线过点抛物线过点(2,0)因此这条抛物线所表示的二次函数为因此这条抛物线所表示的二次函数为:y=-0.5x+2当水面下降当水面下降1m时时,水面的纵坐标为水面的纵坐标为y=-1,这时有这时有:0=a22+2,a=-0.5探究新知探究新知解法三解法三:如图所示如图所示,以抛物线和水面的两个交点的连线为以抛物线和水面的两个交点的连线为x轴,以其中的一个交轴,以其中的一个交点点(如左边的点如左边的点)为原点,建立平面直角坐标系为原点
41、,建立平面直角坐标系.因此可设这条抛物线所表示的因此可设这条抛物线所表示的二次函数二次函数的解析式为的解析式为y=a(x-2)+2抛物线过点抛物线过点(0,0)0=a(-2)+2a=-0.5因此这条抛物线所表示的二次函数为因此这条抛物线所表示的二次函数为y=-0.5(x-2)+2.此时此时,抛物线的顶点为抛物线的顶点为(2,2)探究新知探究新知1.1.理解问题理解问题;回顾回顾“最大利润最大利润”和和“桥梁建筑桥梁建筑”解决问题的过程解决问题的过程,你能总结一下解决此类问题的基本思路吗?与同伴交流你能总结一下解决此类问题的基本思路吗?与同伴交流.2.2.分析问题中的分析问题中的变量变量和和常量
42、常量,以及它们之间的关系;以及它们之间的关系;3.3.用数学的方式表示出它们之间的关系用数学的方式表示出它们之间的关系;4.4.做数学求解做数学求解;5.5.检验结果的合理性检验结果的合理性.【思考思考】“二次函数应用二次函数应用”的思路的思路 探究新知探究新知1.有有一座抛物线形拱桥,正常水位时桥下水面宽度一座抛物线形拱桥,正常水位时桥下水面宽度为为 20m,拱顶距离水面,拱顶距离水面 4 m如图所示的直角坐标如图所示的直角坐标系中,求出这条抛物线表示的函数的解析式系中,求出这条抛物线表示的函数的解析式.OACDByx20 mh解:解:设该拱桥形成的抛物线设该拱桥形成的抛物线的解析式为的解析
43、式为y=ax2.该抛物线过该抛物线过(10,-4),-4=100a,a=-0.04y=-0.04x2.巩固练习巩固练习利用二次函数解决运动中抛物线形问题利用二次函数解决运动中抛物线形问题素养考点素养考点 2探究新知探究新知例例2 如如图,一名运动员在距离篮球圈中心图,一名运动员在距离篮球圈中心4m(水平(水平距离)远处跳起投篮,篮球准确落入篮圈,已知篮距离)远处跳起投篮,篮球准确落入篮圈,已知篮球运行的路线为抛物线,当篮球运行水平距离为球运行的路线为抛物线,当篮球运行水平距离为2.5m时,篮球达到最大高度,且最大高度为时,篮球达到最大高度,且最大高度为3.5m,如果篮圈中心距离地面如果篮圈中心
44、距离地面3.05m,那么篮球在该运动员,那么篮球在该运动员出手时的高度是多少米?出手时的高度是多少米?探究新知探究新知解:解:如图,建立直角坐标系如图,建立直角坐标系.则点则点A的坐标是的坐标是(1.5,3.05),篮球在),篮球在最大高度最大高度时时的位置为的位置为B(0,3.5).以点以点C表示运动员投篮球的出手处表示运动员投篮球的出手处.xyO设以设以y轴为对称轴的抛物线的解析式为轴为对称轴的抛物线的解析式为 y=a(x-0)2+k,即即y=ax2+k.而点而点A,B在这条抛物线上,所以有在这条抛物线上,所以有 2.25a+k=3.05,k=3.5,探究新知探究新知2.巩固练习巩固练习x
45、y巩固练习巩固练习 某某游乐园有一个直径为游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心的水柱为抛物线,在距水池中心3米处达到最高,高度为米处达到最高,高度为5米,且各方向喷出的水柱米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合如图所示,以水平方向为恰好在喷水池中心的装饰物处汇合如图所示,以水平方向为x轴,喷水池中心为轴,喷水池中心为原点建立直角坐标系原点建立直角坐标系(1)求水柱所在抛物线(第一象限部分)的函数表达式;)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修
46、设备期间,喷水管意外喷水,为了不被淋湿,身高)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度原装饰物(高度不变)处汇合,请探究扩建改造后喷水
47、池水柱的最大高度连接中考连接中考巩固练习巩固练习连 接 中 考连 接 中 考解解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x3)2+5(a0),),将(将(8,0)代入)代入y=a(x3)2+5,得:,得:25a+5=0,解得:,解得:a=0.2,水柱所在抛物线(第一象限部分)的函数表达式为水柱所在抛物线(第一象限部分)的函数表达式为y=0.2(x3)2+5(0 x8)(2)当)当y=1.8时,有时,有0.2(x3)2+5=1.8,解得:,解得:x1=1,x2=7,因此为了不被淋湿,身高因此为了不被淋湿,身高1.8米的王师傅站
48、立时必须在米的王师傅站立时必须在离水池中心离水池中心7米以内米以内(3)当)当x=0时,时,y=0.2(x3)2+5=3.2设改造后水柱所在抛物线(第一象限部分)的函数表达式为设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=0.2x2+bx+3.2,该函数图象过点(该函数图象过点(16,0),),0=0.2162+16b+3.2,解得:,解得:b=3,改造后水柱所在抛物线(第一象限部分)的函数表达式为改造后水柱所在抛物线(第一象限部分)的函数表达式为 y=0.2x2+3x+3.2=0.2(x7.5)2+14.45扩建改造后喷水池水柱的最大高度为扩建改造后喷水池水柱的最大高度为14.45
49、米米巩固练习巩固练习连 接 中 考连 接 中 考1.足球足球被从地面上踢起,它距地面的高度被从地面上踢起,它距地面的高度h(m)可可用公式用公式h=-4.9t2+19.6t来表示,其中来表示,其中t(s)表示足球表示足球被踢出后经过的时间,则球在被踢出后经过的时间,则球在 s后落地后落地.42.如如图,小李推铅球,如果铅球运行时离地面的图,小李推铅球,如果铅球运行时离地面的高度高度y(米)关于水平距离米)关于水平距离x(米)的函数解析式米)的函数解析式为为 ,那么铅球运动过程中,那么铅球运动过程中最高点离地面的距离为最高点离地面的距离为 米米.2113822yxx xyO2课堂检测课堂检测基
50、础 巩 固 题基 础 巩 固 题3.某某公园草坪的防护栏是由公园草坪的防护栏是由100段形状相同的抛物线形组成段形状相同的抛物线形组成的,为了牢固起见,每段护栏需要间距的,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢加设一根不锈钢的支柱,防护栏的最高点距底部的支柱,防护栏的最高点距底部0.5m(如图),则这条防护(如图),则这条防护栏需要不锈钢支柱的总长度至少为(栏需要不锈钢支柱的总长度至少为()A.50m B.100m C.160m D.200mC课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题 某某工厂要赶制一批抗震救灾用的大型活动板房如图,板工厂要赶制一批抗震救灾用的大型活动