1、教材同步复习第一部分 第二章方程(组)与不等式(组)课时10一次不等式(组)及其应用知识要点知识要点归纳归纳 人教:七下第九章P113P133;北师大:八下第二章P36P63;华师:七下第八章P49P70.1不等式的相关概念不等式的相关概念知识点知识点1不等式的相关概念及基本性质不等式的相关概念及基本性质不等式不等式用符号用符号“”(“”)或或“”(“”)表示大小关系的表示大小关系的式子,叫做不等式;用符号式子,叫做不等式;用符号“”表示不等关系的式子表示不等关系的式子也是不等式也是不等式解解使不等式成立的未知数的值使不等式成立的未知数的值解集解集一般地,一个含有未知数的不等式的所有的解,组成
2、这一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集个不等式的解集2不等式的基本性质不等式的基本性质小于、少于、不足、低于小于、少于、不足、低于至少、不低于、不小于、不少于至少、不低于、不小于、不少于最多、不超过、不高于、不大于最多、不超过、不高于、不大于2列不等式解应用题的步骤列不等式解应用题的步骤(1)审清题意;(2)设未知数;(3)列不等式;(4)解不等式;(5)检验作答福建真题福建真题精选精选 命题点命题点1一元一次不等式的解法及其解集的表示一元一次不等式的解法及其解集的表示1(2020毕节毕节)不等式x362x的解集是_.解:解:去分母,得去分母,得4x33x.移项、合并
3、同类项,得移项、合并同类项,得x3,不等式的解集为不等式的解集为x3.在数轴上表示解集如答图在数轴上表示解集如答图拓 展 训 练x3答图答图 命题点命题点2一元一次不等式组的解法一元一次不等式组的解法Ax2解:解:解不等式解不等式,得,得x2,解不等式解不等式,得,得x3,则不等式组的解集为则不等式组的解集为3x2.6(2019福建福建)某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水
4、,每天需固定成本30元,并且每处理1吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元命题点命题点3一次不等式的实际应用一次不等式的实际应用(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围解:解:设该厂一天产生的工业废水量为设该厂一天产生的工业废水量为x吨吨当当0 x20时,依题意,得时,依题意,得8x3010 x,解得解得x15,15x20;当当x20时,依题意,得时,依题意,得1
5、2(x20)2083010 x,解得解得x25,20 x25.综上所述,综上所述,15x25.答:该 厂 一 天 产 生 的 工 业 废 水 量 在答:该 厂 一 天 产 生 的 工 业 废 水 量 在 1 5 吨 到吨 到 2 5 吨 之 间吨 之 间 重点难点重点难点突破突破【解题思路】【解题思路】去分母,去括号,移项,合并同类项,然后把去分母,去括号,移项,合并同类项,然后把x的系的系数化为数化为1即可即可【解答】【解答】去分母,得去分母,得3(x1)2(2x2)去括号,得去括号,得3x34x4.移项,得移项,得3x4x43.合并同类项,得合并同类项,得x1.系数化为系数化为1,得,得x
6、1.所以该不等式的解集为所以该不等式的解集为x1.重点重点1一元一次不等式的解法一元一次不等式的解法x1解一元一次不等式时,常出现的错误有以下几种:解一元一次不等式时,常出现的错误有以下几种:(1)去分母时,去分母时,漏乘不含分母的项;漏乘不含分母的项;(2)括号前为负号,去括号时,忘记变号;括号前为负号,去括号时,忘记变号;(3)移项移项时,忘记变号;时,忘记变号;(4)当系数为负,在系数化为当系数为负,在系数化为1时,忘记改变不等号的方时,忘记改变不等号的方向或分子、分母位置颠倒向或分子、分母位置颠倒易 错 提 醒 1.(2020苏州苏州)不等式2x13的解集在数轴上表示正确的是()针对训
7、练针对训练C易错点不等式基本性质易错点不等式基本性质3的运用错误的运用错误【错解步骤】【错解步骤】上述解答过程是从第_步开始出现错误的【错误原因】【错误原因】_.【正解】【正解】去分母,得去分母,得2(2x1)3(5x1)6.去括号,得去括号,得4x215x36.移项、合并同类项,得移项、合并同类项,得11x11.系数化为系数化为1,得,得x1.【名师点评】【名师点评】系数化为系数化为1时,不等式两边同时乘或除以同一个负时,不等式两边同时乘或除以同一个负数,一定要改变不等号的方向数,一定要改变不等号的方向(不等式的基本性质不等式的基本性质3)四不等式两边同时除以一个负数时,不等号没有改变方向针
8、对训练针对训练【解题思路】【解题思路】分别解两个一元一次不等式进而得出不等式组的解分别解两个一元一次不等式进而得出不等式组的解集集重点重点2一元一次不等式组的解法一元一次不等式组的解法D求不等式组的解集时,先分别求出各个不等式的解集,然后按口求不等式组的解集时,先分别求出各个不等式的解集,然后按口诀诀“同大取大,同小取小,大小、小大中间找,大大、小小取不了同大取大,同小取小,大小、小大中间找,大大、小小取不了(无无解解)”或者通过数轴来求公共解,但是用口诀能快速解出答案或者通过数轴来求公共解,但是用口诀能快速解出答案方 法 指 导 针对训练针对训练答图答图 例例4某市公交总公司为节约资源同时惠
9、及民生,拟将一些乘客数量较少的路线换成中巴车,该公司计划购买10台中巴车,现有甲、乙两种型号,已知购买1台甲型车比购买1台乙型车少10万元,购买3台甲型车比购买2台乙型车多30万元重点重点3一次不等式的实际应用一次不等式的实际应用(1)问购买1台甲型车和1台乙型车分别需要多少万元【解题思路】【解题思路】第一步:设购买第一步:设购买1台甲型车需要台甲型车需要x万元,则购买万元,则购买1台乙台乙型车需要型车需要(x10)万元;第二步:根据题意列出方程,解答即可万元;第二步:根据题意列出方程,解答即可【解答】【解答】设购买设购买1台甲型车需要台甲型车需要x万元,则购买万元,则购买1台乙型车需要台乙型
10、车需要(x10)万元万元根据题意,得根据题意,得3x2(x10)30,解得解得x50,x1060.答:购买答:购买1台甲型车需要台甲型车需要50万元,购买万元,购买1台乙型车需要台乙型车需要60万元万元(2)经了解,每台甲型车每年节省2.5万元,每台乙型车每年节省2.1万元,若要使购买的这批中巴车每年至少能节省21.8万,则至少需购买甲型车多少台?【解题思路】【解题思路】第一步:设购买甲型车第一步:设购买甲型车y台,则购买乙型车台,则购买乙型车(10y)台;第二步:根据题意列出不等式,解答即可台;第二步:根据题意列出不等式,解答即可【解答】【解答】设购买甲型车设购买甲型车y台,则购买乙型车台,
11、则购买乙型车(10y)台,台,根据题意,得根据题意,得2.5y2.1(10y)21.8,解得解得y2.答:至少需购买甲型车答:至少需购买甲型车2台台4(2020娄底娄底)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元/瓶,84消毒液的价格是15元/瓶求:(1)该校购进洗手液和84消毒液各多少瓶?针对训练针对训练(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?解:解:设能购买洗手液设能购买洗手液a瓶,则能购买瓶,则能购买84消毒液消毒液(150a)瓶瓶由题意,得由题意,得25a15(150a)2500,解得,解得a25.答:最多能购买洗手液答:最多能购买洗手液25瓶瓶