2020届安徽省安庆市高三第三次模拟考试数学(理)试题 带答案与解析.doc

上传人(卖家):春光无限好 文档编号:541744 上传时间:2020-05-22 格式:DOC 页数:12 大小:930.50KB
下载 相关 举报
2020届安徽省安庆市高三第三次模拟考试数学(理)试题 带答案与解析.doc_第1页
第1页 / 共12页
2020届安徽省安庆市高三第三次模拟考试数学(理)试题 带答案与解析.doc_第2页
第2页 / 共12页
2020届安徽省安庆市高三第三次模拟考试数学(理)试题 带答案与解析.doc_第3页
第3页 / 共12页
2020届安徽省安庆市高三第三次模拟考试数学(理)试题 带答案与解析.doc_第4页
第4页 / 共12页
2020届安徽省安庆市高三第三次模拟考试数学(理)试题 带答案与解析.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、第页 1 安庆市 2020 届高三第三次模拟考试 数学(理科)试题数学(理科)试题 (考试时间:120 分钟 满分:150 分) 注意事项:注意事项: 1答题前,务必在答题卡规定的地方填写自己的姓名、准考证号和座位号。 2答题时,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮 擦干净后,再选涂其他答案标号。 3答题时,必须使用 0.5 毫米的黑色墨水签字笔在答题卡上 书写,要求字体工整、 笔迹清晰。作图题可选用铅笔在答题卡 规定的位置绘出,确认后再用 0.5 毫米的 黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写 的答案无效 ,在试题

2、卷、草稿纸上答题无效 。 第第卷(选择题)卷(选择题) 一、选择题(本大题共一、选择题(本大题共 1212 小题,每小题小题,每小题 5 5 分,共分,共 6060 分分. . 在每小题给出的四个选项中,只在每小题给出的四个选项中,只 有一项是符有一项是符 合题目要求的,请把正确答案的代号填在题后的括号内)合题目要求的,请把正确答案的代号填在题后的括号内) 1. 已知集合2) 1( xxxA,11xxB,则 AB= A. )01, B. )02, C. 10( , D. 20( , 2i是虚数单位,复数 2i 2i a z 是纯虚数,则实数a A. 1 B. 1 C. 4 D. 4 3函数si

3、ncosyxx在 ,上的图象是 4. 在如图所示的算法框图中,若输入的 5 4 x,则输出结果为 第页 2 第 7 题图 A. 5 1 B 5 2 C 5 3 D 5 4 5. 设公差不为 0 的等差数列 n a的前n项和为 n S.若 1718 SS,则在 18 a, 35 S, 1917 aa, 1916 SS这四 个值中,恒等于 0 的个数是 A. 1 B. 2 C. 3 D. 4 6为了得到正弦函数sinyx的图象,可将函数 sin 3 yx 的图象向右平移m个单位长度,或向左 平移n个单位长度(0m,0n) ,则mn的最小值是 A. 3 B. 2 3 C. 4 3 D. 5 3 7如

4、图,网格纸上的小正方形的边长均为 1,粗线画的是一个几何体的三视图,则该几何体的体积是 A. 3 2 B.2 C.3 D. 9 2 8. 设6log 2 1 a,12log 4 1 b,15log 5 1 c,则 A.cba B.abc C.cab D.bac 9. 有四位同学参加校园文化活动,活动共有四个项目,每人限报其中一项.已知甲同学报的 项目其他同学不报,则 4 位同学所报选项各不相同的概率等于 A. 18 1 B. 32 3 C. 9 2 D. 9 8 10. 在平行四边形ABCD中,22 3ABAD,E是 BC 的中点,F点在边CD上,且2CFFD, 若 2 17 BFAE,则DA

5、B A. 30 B. 60 C. 120 D. 150 11. 双曲线1 169 : 22 yx C的右支上一点P在第一象限, 1 F, 2 F分别为双曲线C的左、右焦点,I为 12 PFF的内心,若内切圆I的半径为 1,直线 1 IF, 2 IF的斜率分别为 1 k, 2 k,则 12 kk+的值等于 A. 8 3 B. 8 3 C. 8 5 D. 8 5 12. 定义在R上函数( )f x满足)( 2 1 ) 1(xfxf,且当x0 1,时,( )121f xx . 则使得 第页 3 第 16 题图 1 ( ) 16 f x 在+m,上恒成立的m的最小值是 A. 7 2 B. 9 2 C.

6、 13 4 D. 15 4 第第 IIII 卷(非选择题,共卷(非选择题,共 90 分)分) 本卷包括必考题和选考题两部分本卷包括必考题和选考题两部分. 第第 13 题题第第 21 题为必考题,每个试题考生都必须作答题为必考题,每个试题考生都必须作答. 第第 22 题题第第 23 题为题为选考题,考生根据要求作答选考题,考生根据要求作答. 二、填空题(本大题共二、填空题(本大题共 4 4 小题,每小题小题,每小题 5 5 分,共分,共 2020 分,将每题的正确答案填在题中的横分,将每题的正确答案填在题中的横 线上)线上) 13. 已知公比不为 1 的等比数列 n a,且 7 2 3 aa ,

7、 546 32aaa,则数列的通项公式 n a _. 14在 5 1axx展开式中,x的偶数次幂项的系数之和为8,则a . 15过抛物线 2 4yx焦点F的直线交抛物线于点A、B,交准线于点P,交y轴于点Q, 若FBPQ,则弦长AB . 16九章算术卷第五商功中描述几何体“阳马”为“底面 为 矩 形,一棱垂直于底面 的四棱锥”. 现有阳马ABCDS ,SA平面ABCD, 1AB,3AD,3SA.BC上有一点E,使截面 SDE的周长最短,则SE与CD所成角的余弦值等 于 . 三、三、解答题: (本大题满分解答题: (本大题满分 60 分分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明

8、、证明过程或演算步骤.) 17.(本小题满分 12 分) 在ABC中, 三内角A,B,C对应的边分别为a,b,c, 若B为锐角, 且sin2sin3cosABA. ()求C; ()已知2a,8BCAB,求ABC的面积. 18.(本小题满分 12 分) 如图,在三棱柱 111 ABCABC中, 1 90ACBCCB , 1 60A AC ,D,E分别为 1 A A和 11 BC的中点,且 1 AAACBC ()求证: 1 AE/平面 1 BC D; ()求平面 1 BC D与平面ABC所成锐二面角的余弦值 S A BC D E 第 18 题图 第页 4 19.(本小题满分 12 分) 已知椭圆

9、22 22 :1 xy C ab (0ab)的离心率是 2 2 ,原点到直线1 xy ab 的距离等于 2 3 3 ,又 知点(0 3)Q, ()求椭圆C的标准方程; ()若椭圆C上总存在两个点A、B关于直线yxm对称,且283QBQA,求实数m的取 值范围 20.(本小题满分 12 分) 为了提高生产线的运行效率,工厂对生产线的设备进行了技术改造.为了对比技术改造后的效果,采集 了生产线的技术改造前后各 20 次连续正常运行的时间长度(单位:天)数据,并绘制了如下茎叶图: ()(1) 设所采集的 40 个连续正常运行时间的中位数m, 并将连续正常运行时间超过m和不超过m 的次数填入下面的列联

10、表: 超过m 不超过m 改造前 a b 改造后 c d 试写出 a,b,c,d 的值; (2) 根据 (1) 中的列联表, 能否有 99%的把握认为生产线技术改造前后的连续正常运行时间有差异? 附: 2 2 nadbc K abcdacbd , () 工厂的生产线的运行需要进行维护.工厂对生产线的生产维护费用包括正常维护费、 保障维护费 两种.对生产线设定维护周期为T天(即从开工运行到第kT天(*Nk)进行维护.生产线在一个生产周 期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产线能连续运行,则不会产生保 障维护费;若生产线不能连续运行,则产生保障维护费.经测算,正常维护费

11、为 0.5 万元/次;保障维护费第 一次为 0.2 万元/周期,此后每增加一次则保障维护费增加 0.2 万元. 现制定生产线一个生产周期(以 120 天计)内的维护方案:30T,4321,k. 以生产线在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护 费的分布列及期望值. 2 P Kk 0.050 0.010 0.001 k 3.841 6.635 10.828 第页 5 21.(本小题满分 12 分) 已知函数1 2 1 e)( 2 axxxf x ,Ra. ()若)(xf为R上的增函数,求a的取值范围; ()若0a, 21 xx ,且4)()( 21 xfx

12、f,证明:2)( 21 xxf. 请考生在第请考生在第 2222、2323 题中任选题中任选一题作答,如果多做,则按所做的第一题记分。作答时请写清题号一题作答,如果多做,则按所做的第一题记分。作答时请写清题号 22 (本小题满分 10 分)选修 44 坐标系与参数方程 在平面直角坐标系xOy中,曲线 1 C的参数方程为 33cos 3sin x y (其中为参数) ,以原点O为极 点,以x轴非负半轴为极轴建立极坐标系,曲线 2 C的极坐标方程为4cos0. ()求曲线 1 C的普通方程与曲线 2 C的直角坐标方程; ()设点,A B分别是曲线 12 ,C C上两动点且 2 AOB ,求AOB面

13、积的最大值. 23.(本小题满分 10 分)选修 45 不等式选讲 已知函数 1 1 f xxmx m (其中实数0m) ()当1m,解不等式 3f x ; ()求证: 1 2 1 f x m m . 第页 6 安庆市 2020 届高三第三次模拟考试 数学(数学(理理科)试题参考答案及评分标准科)试题参考答案及评分标准 第第 I I 卷卷 一、 选择题:本题共 12 小题,每小题 5分,共 60 分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A B B C C C A C C B D 第第卷卷 二、 填空题:本题共 4 小题,每小题 5 分,共 20 分. 13.

14、 解析: 设公比为q,则 6 1 22 1 )(qaqa,所以 2 1 qa , 4 1 3 1 5 1 32qaqaqa,故1q(舍)或2q, 所以4 1 a,故 1 2 n n a. 14. 解析:方法一:设 5 65 6510 1axxa xa xa xa,则 6 1a , 43 455 CC510aaa, 21 255 CC105aaa, 0 aa, 由 6420 3aaaa,得 1 2 a . 方法二:设 5 ( )1f xaxx展开式x的偶数次幂项的系数之 和为A,奇数次幂项的系数之和为B,则 (1) ( 1) ABf ABf , 得) 1(16)1() 1 ( 2 1 affA,

15、由8A得 1 2 a . 15. 解析:设点B、F在准线上的射影分别是点G、K,根据抛物线的定义可知原 点O是线段KF的中点, 所以Q是线段PF的中点,PQQF, 又 FBPQ , 可得 2 3 PF PB , 所以 2 3 KFPF GBPB . 因为2KF ,所以 3GB ,所以可得点B的坐标为 2 2 2,(点B只能在第一象限) ,所以直线AB的方程为 2 21yx,代入 2 4yx,可求得 点A的横坐标为 1 2 ,所以 13 1 22 AF , 39 3 22 ABAFBF. 第页 7 16解析:要使截面SDE的周长最短,则EDSE最短,将底面 ABCD沿BC展开成平面图形SCDA(

16、如图) ,连接SD, 交BC于E,则SDEDSE,此时,由1AB, 3SA,则2SB,故3SA,3 ADDA,故 2BE,作CDEF/交AD于F,连接SF,则SE与CD所 成角为SEF,易得EFSF ,由于22SE,1EF, 4 2 22 1 cos SE EF SEF. 三、解答题:共 70 分. 解答应写出文字说明、证明过程或演算步骤.第 1721 题为必考题,每个试题考生 都必须作答. 第 22、23 题为选考题,考生根据要求作答. (一)必考题:60 分. 17.(本小题满分 12 分) 解析: ()由sin2sin3cosABA,得 31 sincossin 22 BAA sinsi

17、n 3 BA . 所以 3 BA,或 2 33 BABA . 因为B为锐角,所以 3 BA,即 3 BA,故 2 3 C . 5 分 ()由8BCAB,得cos()8cos8caBcaB . 因为2a,所以cos4cB. 根据正弦定理, sinsin ac AC ,及 3 AB, 2 3 C ,2a, 得 2 3 sin 3 2 c B ,所以 sin3 3 cB , 31 cossin3 22 cBcB. 代入,得 1 2 3sin3 2 cB,所以sin2 3cB . 所以ABC的面积等于 11 sin2 2 32 3 22 acB . 12 分 18.(本小题满分 12 分) S A B

18、 C D E AD F 第页 8 解析: ()如图 1,取线段 1 BC的中点F,连接EF、DF. 因为E为 11 BC的中点,所以EF/ 1 BB,且 1 1 2 EFBB. 又D为 1 A A的中点,所以 1 AD/ 1 BB,且 11 1 2 ADBB,所以EF/ 1 AD,且EF= 1 AD, 所以四边形 1 ADFE是平行四边形,所以 1 AE/DF. 又DF 平面 1 BC D, 1 AE 平面 1 BC D,所以 1 AE/平面 1 BC D. 6 分 ()作 1 AOAC于点O,因为 1 60A AC ,所以 1 30AAO ,所以 1 11 22 AOA AAC,即O为AC的

19、中点. 因为 1 90ACBCCB ,所以BC 平面 11 A ACC,所以 1 BCAO,所以 1 AO 平面ABC.故可以点O为原点,射线OA、 1 OA分别为x轴和z轴的正半轴,以平行于 BC的直线为y轴,建立空间直角坐标系,如图 2. 令 1 2AAACBCa,则(0 0)A a,(20)Baa , , 1(0 0 3 )Aa, 1( 2 03 )Caa, 13 0 22 Daa ,所以 aaaBD 2 3 ,2, 2 3 , aaDC 2 3 , 0 , 2 5 1 . 设平面 1 BC D一个法向量为),(zyxm,则 33 ()20 22 53 ()00 22 x y zaaa

20、x y zaa , , , , , 第页 9 得 33 20 22 53 0 22 xyz xz , .取3x ,2 3y ,5z ,所以)5 , 32 , 3(m. 又平面ABC的一个法向量为)3, 0 , 0( 1 aOA ,设平面 1 BC D与平面ABC所成锐二面 角为,则. 4 10 340 35 cos 1 1 a a OAm OAm 所以平面 1 BC D与平面ABC所成锐二面角的余弦值为 10 4 12 分 19.(本小题满分 12 分) 解析: ()由 22 22 2 2 12 3 311 ab a ab , ,得 2 4a , 2 2b , 所以椭圆C的标准方程为 22 1

21、 42 xy 5 分 ()根据题意可设直线AB的方程为yxn ,联立 22 1 42 yxn xy , , 整理得 22 342(2)0xnxn,由 22 ( 4 )4 3 2(2)0nn ,得 2 6n 设 11 ()A xxn, , 22 ()B xxn, ,则 12 4 3 n xx, 2 12 22 3 n x x . 又设AB的中点为 00 ()M xxn, ,则 12 0 2 23 xxn x , 0 3 n xn. 由于点M在直线yxm上,所以 2 33 nn m,得3nm,代入 2 6n , 得 2 96m ,所以 66 33 m . 因为) 3,( 11 nxxQA,) 3,

22、( 22 nxxQB,所以 2 2121 ) 3()(3(2nxxnxxQBQA 第页 10 22 2 4(2)4 (3)3619 (3) 333 nn nnn n . 由283QBQA,得 2 36192813nnn ,所以133m , 即 1 1 3 m . 又由得 61 33 m. 故实数m的取值范围为 61 33 ,. 12 分 20.(本小题满分 12 分) 解析: () (1)由茎叶图知30 2 3129 m 根据茎叶图可得:5a,15b,15c,5d. 2 分 (2)由于635. 610 20202020 )151555(40 2 2 K,所以有 99%的把握认为连续正常运行时间

23、有差 异 5 分 ()生产周期内有 4 个维护周期,一个维护周期为 30 天,一个维护周期内,生产线需保障维护的概率为 4 1 p. 设一个生产周期内需保障维护的次数为次,则正常维护费为245 . 0万元,保障维护费为 1 . 01 . 0 2 ) 1(2 . 0 2 万元. 故一个生产周期内需保障维护次时的生产维护费为21 . 01 . 0 2 万元. 由于) 4 1 4(,B,设一个生产周期内的生产维护费为X万元,则分布列为 X 2 2.2 2.6 3.2 4 P 256 81 64 27 128 27 64 3 256 1 则 )(XE 256 1 4 64 3 2 . 3 128 27

24、 6 . 2 64 27 2 . 2 256 81 2 275. 2 256 4 .582 256 44 .384 .1406 .237162 万元. 故一个生产周期内生产维护费的期望值为 2.275 万元 12 分 21.(本小题满分 12 分) 解析:()axxf x e)( , 若)(xf为R上的增函数, 则0e)( axxf x 恒成立, 即ax x e 第页 11 恒成立.设xxF x e)(,则 1e)( x xF,当)0 ,(x时,0)( xF,当), 0( x时, 0)( xF,所以)(xF在)0 ,(上单调递减,在), 0( 上单调递增,所以1)0()(FxF,故 1a,所以

25、1a. 5 分 ()若0a,由()知)(xf为R上的增函数.由于2)0(f,已知 21 xx ,且4)()( 21 xfxf, 不妨设 21 0xx.设函数)()()(xfxfxh,)0 ,(x,则 ) 1 2 1 e (1 2 1 e)( 22 axxaxxxh xx 2ee 2 x xx ,则)( xhx xx 2ee ,设 )( xhx )(,则02ee)( xx x,由于)0 ,(x,所以)( xh为)(0 ,上的增函数, 所以0)0( )( hxh,所以)(xh为)(0 ,上的减函数,所以 4)0()()()( 111 hxfxfxh,所以)()(4)( 112 xfxfxf,而)(

26、xf为R 上的增函数,所以 12 xx,故0 21 xx.从而2)0()( 21 fxxf. 故2)( 21 xxf. 12 分 (二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分. 22 (本小题满分 10 分)选修 44 坐标系与参数方程 解析: ()由条件知消去参数得到曲线 1 C的普通方程为 2 2 39xy. 因4cos0可化为 2 4 cos0,又 222, cosxyx,代入得 22 40xyx,于 是曲线 2 C的直角坐标方程为 22 40xyx. 5 分 ()由条件知曲线 12 ,C C均关于x轴对称,而且外切于原点O, 不妨

27、设 1, 0 2 A ,则 2, 2 B , 因曲线 1 C的极坐标方程为6cos, 所以 12 6cos ,4cos4sin 2 , 于是 12 11 6cos4sin6sin26 22 AOB S , 第页 12 所以当 4 时,AOB面积的最大值为 6. 10 分 23.(本小题满分 10 分)选修 45 不等式选讲 解析: ()由条件知1m时, 1 2,1 2 131 1,1 222 11 2, 22 xx f xxxx xx 于是原不等式可化为 1 1 23 2 x x ; 1 1 2 3 3 2 x ; 1 2 1 23 2 x x 解得 7 1 4 x;解得 1 1 2 x;解得 51 42 x , 所以不等式 3f x 的解集为 5 7 , 4 4 5 分 ()由已知得 111 111 f xxmx m mmm m 1111 1111 xmxm mm mmm m 1111 2 11 mm mmmm 当且仅当1m时,等号成立,于是原不等式得证. 10 分

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 模拟试题
版权提示 | 免责声明

1,本文(2020届安徽省安庆市高三第三次模拟考试数学(理)试题 带答案与解析.doc)为本站会员(春光无限好)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|