1、要点梳理要点梳理 1.1.命题的概念命题的概念 在数学中用语言在数学中用语言、符号或式子表达的符号或式子表达的,可以可以_ 的陈述句叫做命题的陈述句叫做命题.其中其中_的语句叫真命题的语句叫真命题,_ _的语句叫假命题的语句叫假命题.1.2 1.2 命题及其关系、充分条命题及其关系、充分条件与必要条件件与必要条件 判断真假判断真假判断为真判断为真判断为假判断为假基础知识基础知识 自主学习自主学习2.2.四种命题及其关系四种命题及其关系(1 1)四种命题)四种命题命题命题表述形式表述形式原命题原命题若若p p,则,则q q逆命题逆命题_否命题否命题_逆否命题逆否命题_qp则若,pq则若,若若q
2、q,则则p p(2 2)四种命题间的逆否关系)四种命题间的逆否关系 逆命题逆命题逆否命题逆否命题否命题否命题(3)(3)四种命题的真假关系四种命题的真假关系 两个命题互为逆否命题,它们有两个命题互为逆否命题,它们有_的真假性的真假性;两个命题互为逆命题或互为否命题,它们的真假两个命题互为逆命题或互为否命题,它们的真假 性性_._.3.3.充分条件与必要条件充分条件与必要条件 (1)(1)如果如果p p q q,则则p p是是q q的的_,_,q q是是p p的的_;_;(2)(2)如果如果p pq q,q qp p,则则p p是是q q的的_._.4.4.特别注意:命题的否命题是既否定命题的条
3、件特别注意:命题的否命题是既否定命题的条件,又又 否定命题的结论;而命题的否定是只否定命题的否定命题的结论;而命题的否定是只否定命题的 结论结论.相同相同没有关系没有关系充分条件充分条件必要条件必要条件充要条件充要条件基础自测基础自测A2.2.命题命题“若若x x2 2 y y2 2,则,则x x y y”的逆否命题是的逆否命题是 ()A.“A.“若若x x y y,则,则x x2 2 y y,则则x x2 2 y y2 2”C.“C.“若若x xy y,则,则x x2 2y y2 2”D.“D.“若若x xy y,则则x x2 2y y2 2”C3.3.(2009(2009江西江西)下列命题
4、是真命题的为下列命题是真命题的为 ()A.A.B.B.若若x x2 2=1,=1,则则x x=1=1 C.C.若若x x=y y,则则 D.D.若若x x y y,则则x x2 2 d d,则则 “a a b b”是是“a a-c c b b-d d”的的 ()A.A.充分而不必要条件充分而不必要条件 B.B.必要而不充分条件必要而不充分条件 C.C.充要条件充要条件 D.D.既不充分也不必要条件既不充分也不必要条件 解析解析 c c d d,-,-c c-b b,a a-c c与与b b-d d的大小无法比较;的大小无法比较;当当a a-c c b b-d d成立时,假设成立时,假设a ab
5、 b,-,-c c-d d,a a-c c b b.综上可知,综上可知,“a a b b”是是“a a-c c b b-d d”的必要不充分的必要不充分 条件条件.B题型一题型一 命题的关系及命题真假的判断命题的关系及命题真假的判断【例例1 1】分别写出下列命题的逆命题、否命题、逆否分别写出下列命题的逆命题、否命题、逆否 命题,并判断它们的真假命题,并判断它们的真假.(1 1)面积相等的两个三角形是全等三角形)面积相等的两个三角形是全等三角形.(2 2)若)若q q1,1,则方程则方程x x2 2+2+2x x+q q=0=0有实根有实根.(3 3)若)若x x2 2+y y2 2=0=0,则
6、实数,则实数x x、y y全为零全为零.题型分类题型分类 深度剖析深度剖析解解 (1 1)逆命题:全等三角形的面积相等)逆命题:全等三角形的面积相等,真命题真命题.否命题:面积不相等的两个三角形不是全等三角形,否命题:面积不相等的两个三角形不是全等三角形,真命题真命题.逆否命题:两个不全等的三角形的面积不相等,假命逆否命题:两个不全等的三角形的面积不相等,假命题题.(2)(2)逆命题:若方程逆命题:若方程x x2 2+2+2x x+q q=0=0有实根有实根,则则q q1,b b+d d,q q:a a b b且且c c d d B.B.p p:a a1,1,b b1,1,q q:f f(x
7、x)=)=a ax x-b b(a a0,0,且且a a1)1)的图象不过的图象不过 第二象限第二象限 C.C.p p:x x=1=1,q q:x x2 2=x x D.D.p p:a a1,1,q q:f f(x x)=)=logloga ax x(a a0,0,且且a a1)1)在(在(0,+0,+)上)上 为增函数为增函数 解析解析 由于由于a a b b,c c d d a a+c c b b+d d,而,而a a+c c b b+d d却不一定却不一定 推出推出a a b b,c c d d.故故A A中中p p是是q q的必要不充分条件的必要不充分条件.B.B中中,当当a a1,1
8、,b b11时,函数时,函数f f(x x)=)=a ax x-b b不过第二象限不过第二象限,当当f f(x x)=)=a ax x-b b不过第二象限时,有不过第二象限时,有a a1,1,b b1.1.故故B B中中p p是是q q的充分不的充分不必要条件必要条件.C.C中,因为中,因为x x=1=1时有时有x x2 2=x x,但,但x x2 2=x x时不一定有时不一定有x x=1=1,故,故C C中中p p是是q q的充分不必要条件的充分不必要条件.D.D中中p p是是q q的充要条的充要条件件.答案答案 A题型三题型三 充要条件的证明充要条件的证明 【例例3 3】(1212分)求证
9、方程分)求证方程axax2 2+2+2x x+1=0+1=0有且只有一个有且只有一个 负数根的充要条件为负数根的充要条件为a a00或或a a=1.=1.思维启迪思维启迪 (1 1)注意讨论)注意讨论a a的不同取值情况;的不同取值情况;(2 2)利用根的判别式求)利用根的判别式求a a的取值范围的取值范围.解题示范解题示范 证明证明 充分性:充分性:当当a a=0=0时,方程变为时,方程变为2 2x x+1=0+1=0,其根为,其根为 方程只有一负根方程只有一负根.2.2分分 当当a a=1=1时,方程为时,方程为x x2 2+2+2x x+1=0+1=0,其根为,其根为x x=-1,=-1
10、,方程只有一负根方程只有一负根.4.4分分 当当a a00)0,方程有两个不相等的根,方程有两个不相等的根,,21x且且 0|这个条件是其充分条件这个条件是其充分条件 吗?为什么?吗?为什么?证明证明 设设x x2 2+axax+1=0+1=0的两实根为的两实根为x x1 1,x x2 2,则平方和大于则平方和大于3 3的等价条件是的等价条件是|a a|这个条件是必要条件但不是充分条件这个条件是必要条件但不是充分条件.55|.55,32)(2)(0422122122212aaaaaaxxxxxxa或或即,3|aa3,31.1.当一个命题有大前提而要写出其它三种命题时当一个命题有大前提而要写出其
11、它三种命题时,必必 须保留大前提,也就是大前提不动;对于由多个并须保留大前提,也就是大前提不动;对于由多个并 列条件组成的命题,在写其它三种命题时,应把其列条件组成的命题,在写其它三种命题时,应把其 中一个(或中一个(或n n个)作为大前提个)作为大前提.2.2.数学中的定义、公理、公式、定理都是命题数学中的定义、公理、公式、定理都是命题,但命但命 题与定理是有区别的;命题有真假之分,而定理都题与定理是有区别的;命题有真假之分,而定理都 是真的是真的.方法与技巧方法与技巧思想方法思想方法 感悟提高感悟提高3.3.命题的充要关系的判断方法命题的充要关系的判断方法 (1)(1)定义法:直接判断若定
12、义法:直接判断若p p则则q q、若、若q q则则p p的真假的真假.(2)(2)等价法:即利用等价法:即利用 的等价关系,对的等价关系,对 于条件或结论是否定式的命题于条件或结论是否定式的命题,一般运用等价法一般运用等价法.(3)(3)利用集合间的包含关系判断利用集合间的包含关系判断:若若A AB B,则则A A是是B B的的 充分条件或充分条件或B B是是A A的必要条件的必要条件;若若A A=B B,则则A A是是B B的充要的充要 条件条件.1.1.否命题是既否定命题的条件,又否定命题的结论,否命题是既否定命题的条件,又否定命题的结论,而命题的否定是只否定命题的结论而命题的否定是只否定命题的结论.要注意区别要注意区别.2.2.判断判断p p与与q q之间的关系时之间的关系时,要注意要注意p p与与q q之间关系的方之间关系的方 向性向性,充分条件与必要条件方向正好相反充分条件与必要条件方向正好相反,不要混淆不要混淆.失误与防范失误与防范 返回返回