1、2-2力的合成与分解一、选择题1如图所示,两根相距为L的竖直固定杆上各套有质量为m的小球,小球可以在杆上无摩擦地自由滑动,两小球用长为2L的轻绳相连,今在轻绳中点施加一个竖直向上的拉力F,恰能使两小球沿竖直杆向上匀速运动。则每个小球所受的拉力大小为(重力加速度为g)()Amg/2BmgC.F/3DF答案C解析根据题意可知:轻绳与竖直杆间距正好组成等边三角形,对结点进行受力分析,根据平衡条件可得,F2Fcos30,解得小球所受拉力F,C正确。2一种测定风力的仪器原理如图所示,它的细长金属直杆一端固定于悬点O,另一端悬挂着一个质量为m的金属球。无风时,金属直杆自然下垂,当受到沿水平方向吹来的风时,
2、金属直杆将偏离竖直方向一定角度,风力越大,偏角越大。下列关于风力F与偏角、小球质量m之间的关系式正确的是()AFmgsin BFmgcosCFmgtan DFmgcot答案C解析对小球受力分析如图所示,三力平衡,由几何关系可得Fmgtan,选项C对。3如图所示,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N1,球对木板的压力大小为N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中()AN1始终减小,N2始终增大BN1始终减小,N2始终减小CN1先增大后减小,N2始终减小DN1先增大后减小,N2先减小后增大答案B解析小球处于动态平衡
3、状态,其受力分析如图,平移弹力N1,与重力G、N2构成图示封闭的力三角形。木板缓慢地转到水平位置,即N2与竖直方向的夹角变小,由图可知,N1减小,N2减小,选项B正确。4如图所示,斜面体M放置在水平地面上,位于斜面上的物块m受到沿斜面向上的推力F的作用,设物块与斜面之间的摩擦力大小为f1,斜面体与地面之间的摩擦力大小为f2。增大推力F,斜面体始终保持静止,下列判断正确的是()A如果物块沿斜面向上滑动,则f1、f2一定增大B如果物块沿斜面向上滑动,则f1、f2一定不变C如果物块与斜面相对静止,则f1、f2一定增大D如果物块与斜面相对静止,则f1、f2一定不变答案B解析当物块沿斜面向上滑动时,以斜
4、面体为研究对象,物块对斜面体的正压力不变,物块与斜面之间的滑动摩擦力大小f1则不变,物块对斜面体的正压力和滑动摩擦力都不变,斜面体受力则不变,所以斜面体与地面之间的摩擦力大小f2也就不变,B正确;如果物块与斜面相对静止,物块对斜面体的正压力不变,可是物块与斜面间的静摩擦力随F的变化而变化,由于初始时物块的重力沿斜面向下的分力与F的关系未知,所以不能确定f1的变化情况;分析f2的变化时,若再以斜面体为研究对象情况就复杂了,但由于整体处于平衡状态,故可对整体受力分析如图所示:根据平衡条件可知,地面对斜面体的摩擦力f2随F的增大而增大,所以C、D都不对。5如图所示,两根等长的轻绳将日光灯悬挂在天花板
5、上,两绳与竖直方向的夹角都为45,日光灯保持水平,所受重力为G,左右两绳的拉力大小分别为()AG和G B.G和 GC.G和G D.G和 G答案B解析由对称性可知两绳的拉力大小应相等,所以排除C选项;由平衡条件可知竖直方向上2Fcos45G,FG,选项B正确。6 如图所示,硬杆一端通过铰链固定在墙上的B点,另一端装有滑轮,重物用绳拴住通过滑轮固定于墙上的A点,若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A点稍向下移,再使之平衡时,则()A杆与竖直墙壁的夹角减小B绳的拉力减小,滑轮对绳的作用力增大C绳的拉力不变,滑轮对绳的作用力增大D绳的拉力、滑轮对绳的作用力都不变答案AC解析以滑轮为研究对象
6、,受力分析可知,绳上拉力始终等于物体重力,拉力不变,将绳的固定端从A点稍向下移,两边绳子的夹角变小,滑轮对绳的作用力增大,选项C正确,选项B、D错误;又因为杆上力的方向为两边绳子角平分线方向,因此杆与竖直墙壁的夹角减小,选项A正确。7如图所示,固定在水平地面上的物体A,左侧是圆弧面,右侧是倾角为的斜面,一根轻绳跨过物体A顶点上的小滑轮,绳两端分别系有质量为m1、m2的小球,当两球静止时,小球m1与圆心连线跟水平方向的夹角也为,不计一切摩擦,圆弧面半径远大于小球直径,则m1、m2之间的关系是()Am1m2 Bm1m2tanCm1m2cot Dm1m2cos答案B解析通过光滑的滑轮相连,左右两侧绳
7、的拉力大小相等,两小球都处于平衡状态,又由受力分析可得:对m1有,Tm1gcos。 对m2有,Tm2gsin,联立两式可得m1gcosm2gsin,所以选项B正确。8如图所示,M、N为装在水平面上的两块间距可以调节的光滑竖直挡板,两板间叠放着A、B两个光滑圆柱体,现将两板间距调小些,这时与原来相比,下述结论中正确的是()AN板对圆柱体A的弹力变小B圆柱体A对圆柱体B的弹力变大C水平面对圆柱体B的弹力变大D水平面对圆柱体B的弹力变小答案A解析先运用整体法,选取A、B组成的系统为研究对象,系统平衡,在竖直方向上,水平面对圆柱体B的弹力等于系统的重力,即该弹力大小不变,C、D两项错误;再用隔离法,选
8、取A为研究对象,对其受力分析如图,根据平衡条件,可得F1GA/sin,F2GAcot,可见,当两板间距调小时,变大,F1变小,F2也变小,即N板对圆柱体A的弹力变小,圆柱体B对圆柱体A的弹力变小,根据牛顿第三定律,圆柱体A对圆柱体B的弹力也变小,A项正确,B项错误。二、非选择题9.如图所示,光滑斜面的倾角为,有两个相同的小球1和2,分别用光滑挡板A、B挡住,挡板A沿竖直方向,挡板B垂直于斜面,则两挡板受到小球的压力大小之比为_,斜面受到两个小球的压力大小之比为_。答案解析本题是典型的根据重力的作用效果进行力的分解的应用,挡板在斜面上的方向不同,重力的作用效果就不同。球1重力分解如图(a)所示,
9、F1Gtan,F2;球2重力分解如图(b)所示,F1Gsin,F2Gcos。所以挡板A、B所受压力大小之比:。斜面受两小球压力大小之比:。10.用一根轻绳把一质量为0.5kg的小球悬挂在O点,用力F拉小球使悬线偏离竖直方向30角,小球处于平衡状态,力F与竖直方向的夹角为,如右图所示,若使力F取最小值,则等于_,此时绳的拉力为_N。(g取10N/kg)答案60解析由题意可知小球始终在O点静止,合外力为零。小球共受三个力作用:重力、绳向上的拉力FT及拉力F,这三个力的合力为零。如右图所示,重力是恒力,FT的方向不变,F的大小方向都改变。因此可知:F与FT垂直时有最小值,即60,绳上拉力FTmgco
10、s30N。11在倾角30的斜面上有一块竖直放置的挡板,在挡板和斜面之间放有一个重为G20N的光滑圆球,如图所示。试求这个球对斜面的压力大小和对挡板的压力大小。答案NN解析球受到向下的重力作用,这个重力总欲使球向下运动,但是由于挡板和斜面的支持,球才能保持静止状态,因此球的重力产生了两个作用效果,如图所示,根据作用效果分解为两个分力:(1)使球垂直压紧斜面的力F2;(2)使球垂直压紧挡板的力F1。由几何知识可得F1与F2的大小。三个力可构成一个直角三角形。由几何关系得,球对挡板的压力F1GtanN,其方向与挡板垂直且水平向左。球对斜面的压力F2N,其方向与斜面垂直斜向下。12物体A的质量为2kg
11、,两根轻细绳b和c的一端连接于竖直墙上,另一端系于物体A上,在物体A上另施加一个与水平方向成角的拉力F, 相关几何关系如图所示,60。若要使两绳都能伸直,求拉力F的大小范围。(g取10m/s2)答案NFN解析作出物体A的受力分析如图所示,由平衡条件得FsinF1sinmg0FcosF2F1cos0由式得FF1由式得F要使两绳都伸直,则有F10,F20所以由式得FmaxN由式得FminN综合得F的取值范围为NFN13如图所示是一种研究劈的作用的装置。托盘A固定在细杆上,细杆放在固定的圆孔中,下端有滚轮,细杆只能在竖直方向上移动,在与托盘连接的滚轮正下面的底座上也固定一个滚轮,轻质劈放在两滚轮之间
12、,劈背的宽度为a,两侧面的长度均为l,劈尖上固定的细线通过滑轮悬挂质量为m的砝码,调整托盘上所放砝码的质量M,可以使劈在任何位置时都不发生移动。忽略一切摩擦和劈、托盘、细杆与滚轮的重力,若al,试求M是m的多少倍?答案倍解析对托盘、细杆、上滚轮组成的系统受力分析, 托盘受向下的压力F1Mg,劈对上滚轮的支持力F2,圆孔对细杆水平向左的约束力F3,如图甲所示,则有F1MgF2cos,则MgF2对劈受力分析,劈受细线的拉力F4mg,受两滚轮的作用力F5、F6 ,如图乙所示则有:F5F6,F4mg2F5sin,则mgF5又F2和F5是作用力与反作用力,故F2F5由联立解得将al代入得所以M是m的倍。