北师大版九年级下册数学期中试卷(DOC 28页).doc

上传人(卖家):2023DOC 文档编号:5537807 上传时间:2023-04-24 格式:DOC 页数:28 大小:476.50KB
下载 相关 举报
北师大版九年级下册数学期中试卷(DOC 28页).doc_第1页
第1页 / 共28页
北师大版九年级下册数学期中试卷(DOC 28页).doc_第2页
第2页 / 共28页
北师大版九年级下册数学期中试卷(DOC 28页).doc_第3页
第3页 / 共28页
北师大版九年级下册数学期中试卷(DOC 28页).doc_第4页
第4页 / 共28页
北师大版九年级下册数学期中试卷(DOC 28页).doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、初中精品资料 欢迎下载北师大版九年级下册数学期中试卷一选择题(共10小题)1如图,在RtABC中,BAC=90,ADBC于点D,则下列结论不正确的是()ABCD2在RtABC中,C=90,sinA=,AC=6cm,则BC的长度为()A6cmB7cmC8cmD9cm3如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45,则建筑物MN的高度等于()A8()mB8()mC16()mD16()m4已知A为锐角,且tanA=,那么下列判断正确的是()A0A30B30A45C45A60D60A905抛物线y=ax2+b

2、x+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()ABCD6已知函数y=ax22ax1(a是常数,a0),下列结论正确的是()A当a=1时,函数图象过点(1,1)B当a=2时,函数图象与x轴没有交点C若a0,则当x1时,y随x的增大而减小D若a0,则当x1时,y随x的增大而增大7点P1(1,y1),P2(3,y2),P3(5,y3)均在二次函数y=x2+2x+c的图象上,则y1,y2,y3的大小关系是()Ay3y2y1By3y1=y2Cy1y2y3Dy1=y2y38如图,AB是O的直径,CDAB,ABD=60,CD=2,则阴影部分的面积为()AB

3、C2D49若抛物线y=x22x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()Ay=(x2)2+3By=(x2)2+5Cy=x21Dy=x2+410如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个二填空题(共10小题)11如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米12在ABC中,C=90,AB=13,BC=5,则sinA的值是13在ABC中,C=9

4、0,ABC的面积为6,斜边长为6,则tanA+tanB的值为14同角三角函数的基本关系为:(sin)2+(cos)2=1,=tan利用同角三角函数的基本关系求解下题:已知tan=2,则=15规定:sin(x+y)=sinxcosy+cosxsiny根据初中学过的特殊角的三角函数值,求得sin75的值为16已知抛物线y=ax23x+c(a0)经过点(2,4),则4a+c1=17若二次函数y=2x24x1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为18如果抛物线y=2x2+mx+n的顶点坐标为(1,3),那么m+n的值等于19已知抛物线y=ax2+bx+c过(2,3),(4,3)

5、两点,那么抛物线的对称轴为直线20如图,在平面直角坐标系中,过抛物线y=a(x+1)22(x0,a为常数)的顶点A作ABx轴于点B,过抛物线y=a(x1)2+2(x0,a为常数)的顶点C作CDx轴于点D,连结AD、BC则四边形ABCD的面积为三解答题(共10小题)2122如图,ABC中,ACB=90,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E(1)求线段CD的长;(2)求cosABE的值23如图,在O中,D、E分别是半径OA、OB的中点,C是O上一点,CD=CE(1)求证:=;(2)若AOB=120,CD=2,求半径OA的长24如图,某办公楼AB的后面有一建筑物CD

6、,当光线与地面的夹角是22时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上)(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离(参考数据:sin22,cos22,tan22)25据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,D=90,第一次探测到一辆轿车从B点匀速向D点行驶,测得ABD=31,2秒后到达C点,测得ACD=50(tan310.6,tan50

7、1.2,结果精确到1m)(1)求B,C的距离(2)通过计算,判断此轿车是否超速26如图,已知抛物线y=x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标27如图,抛物线y=x23x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标28如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴

8、对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+mkx+b的x的取值范围29某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?30如图,抛物线经过A(1,0),B(5,0),C(0,)三点(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标

9、;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由北师大版九年级下册数学期中试卷参考答案与试题解析一选择题(共10小题)1(2016乐山)如图,在RtABC中,BAC=90,ADBC于点D,则下列结论不正确的是()ABCD【分析】根据锐角三角函数的定义,即可解答【解答】解:在RtABC中,BAC=90,sinB=,ADBC,sinB=,sinB=sinDAC=,综上,只有C不正确故选:C【点评】本题考查了锐角三角函数,解决本题的关键是熟记锐角三角函数的定义2(2016怀化)在RtABC中,C=90,s

10、inA=,AC=6cm,则BC的长度为()A6cmB7cmC8cmD9cm【分析】根据三角函数的定义求得BC和AB的比值,设出BC、AB,然后利用勾股定理即可求解【解答】解:sinA=,设BC=4x,AB=5x,又AC2+BC2=AB2,62+(4x)2=(5x)2,解得:x=2或x=2(舍),则BC=4x=8cm,故选:C【点评】本题考查了三角函数与勾股定理,正确理解三角函数的定义是关键3(2016南通)如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45,则建筑物MN的高度等于()A8()mB8()mC

11、16()mD16()m【分析】设MN=xm,由题意可知BMN是等腰直角三角形,所以BN=MN=x,则AN=16+x,在RtAMN中,利用30角的正切列式求出x的值【解答】解:设MN=xm,在RtBMN中,MBN=45,BN=MN=x,在RtAMN中,tanMAN=,tan30=,解得:x=8(+1),则建筑物MN的高度等于8(+1)m;故选A【点评】本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角或俯角,知道仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角;并与三角函数相结合求边的长4(2016雅安校级自主招生)已知A为锐角,且tanA=,那么下列判断正确

12、的是()A0A30B30A45C45A60D60A90【分析】根据正切函数的增减性,可得答案【解答】解:1,由正切函数随锐角的增大而增大,得tan30tanAtan45,即30A45,故选:B【点评】本题考查了特殊角的三角函数值,利用正切函数的增减性是解题关键5(2016贺州)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()ABCD【分析】根据二次函数图象与系数的关系确定a0,b0,c0,根据一次函数和反比例函数的性质确定答案【解答】解:由抛物线可知,a0,b0,c0,一次函数y=ax+b的图象经过第一、三、四象限,反比例函

13、数y=的图象在第二、四象限,故选:B【点评】本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键6(2016宁波)已知函数y=ax22ax1(a是常数,a0),下列结论正确的是()A当a=1时,函数图象过点(1,1)B当a=2时,函数图象与x轴没有交点C若a0,则当x1时,y随x的增大而减小D若a0,则当x1时,y随x的增大而增大【分析】把a=1,x=1代入y=ax22ax1,于是得到函数图象不经过点(1,1),根据=80,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=1判断二次函数的增减性【解答】解:A、当a=1,x=

14、1时,y=1+21=2,函数图象不经过点(1,1),故错误;B、当a=2时,=424(2)(1)=80,函数图象与x轴有两个交点,故错误;C、抛物线的对称轴为直线x=1,若a0,则当x1时,y随x的增大而增大,故错误;D、抛物线的对称轴为直线x=1,若a0,则当x1时,y随x的增大而增大,故正确;故选D【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键7(2016兰州)点P1(1,y1),P2(3,y2),P3(5,y3)均在二次函数y=x2+2x+c的图象上,则y1,y2,y3的大小关系是()Ay3y2y1By3y1=y2Cy1y2y3Dy1=y2y3【分析】根据函数解析

15、式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,P1(1,y1)与(3,y1)关于对称轴对称,可判断y1=y2y3【解答】解:y=x2+2x+c,对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,35,y2y3,根据二次函数图象的对称性可知,P1(1,y1)与(3,y1)关于对称轴对称,故y1=y2y3,故选D【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性8(2016通辽)如图,AB是O的直径,CDAB,ABD=60,CD=2,则阴影部分的面积为()ABC2D

16、4【分析】连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可【解答】解:连接ODCDAB,CE=DE=CD=,故SOCE=SODE,即可得阴影部分的面积等于扇形OBD的面积,又ABD=60,CDB=30,COB=60,OC=2,S扇形OBD=,即阴影部分的面积为故选A【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键9(2016眉山)若抛物线y=x22x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()Ay=(x2)2+3By=(x2)

17、2+5Cy=x21Dy=x2+4【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,y=(x1)2+2,原抛物线图象的解析式应变为y=(x1+1)2+23=x21,故答案为C【点评】本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型10(2016枣庄)如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+

18、b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y0,可得a+b+c0;再根据图象开口向下,可得a0,图象的对称轴为x=,可得,b0,所以b=3a,ab;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得0,所以b24ac0,4acb20,据此解答即可【解答】解:二次函数y=ax2+bx+c图象经过原点,c=0,abc=0正确;x=1时,y0,a+b+c0,不正确;抛物线开口向下,a0,抛物线的对称轴是x=,b0,b=3a,又a0,b0,ab,正确;二

19、次函数y=ax2+bx+c图象与x轴有两个交点,0,b24ac0,4acb20,正确;综上,可得正确结论有3个:故选:C【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c)二填空题(共10小题)11(2016岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿

20、山坡向上走了200米到达点B,则小辰上升了100米【分析】根据坡比的定义得到tanA=,A=30,然后根据含30度的直角三角形三边的关系求解【解答】解:根据题意得tanA=,所以A=30,所以BC=AB=200=100(m)故答案为100【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式12(2016永春县模拟)在ABC中,C=90,AB=13,BC=5,则sinA的值是【分析】利用锐角三角函数的定义求解,sinA为A的对边比斜边,求出即可【解答】解:在ABC中,C=90,AB=13

21、,BC=5,sinA=故答案为【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边13(2016杭州校级模拟)在ABC中,C=90,ABC的面积为6,斜边长为6,则tanA+tanB的值为3【分析】由ABC的面积为6可得ab=12,再由勾股定理可得a2+b2=62=36,再由tanA+tanB=+=求解【解答】解:ABC的面积为6,ab=12在RtABC中,C=90,AB=6,a2+b2=62=36,tanA+tanB=3,故答案为:3【点评】本题考查锐角三角函数的概念和勾股定理,关键是掌握正切定义14(2016兰州模拟)同

22、角三角函数的基本关系为:(sin)2+(cos)2=1,=tan利用同角三角函数的基本关系求解下题:已知tan=2,则=【分析】将(sin)2+(cos)2=1代入后得到(tan+),然后求值即可【解答】解:=(tan+)=(2+)=,故答案为:【点评】本题考查了同角三角函数的关系,解题的关键是能够对代数式进行正确的变形,难度不大15(2016临沂一模)规定:sin(x+y)=sinxcosy+cosxsiny根据初中学过的特殊角的三角函数值,求得sin75的值为【分析】根据sin(x+y)=sinxcosy+cosxsiny,可得答案【解答】解:sin75=sin(45+30)=sin45c

23、os30+cos45sin30=+=,故答案为:【点评】本题考查了特殊角三角函数值,利用sin(x+y)=sinxcosy+cosxsiny是解题关键16(2016牡丹江)已知抛物线y=ax23x+c(a0)经过点(2,4),则4a+c1=3【分析】将点(2,4)代入y=ax23x+c(a0),即可求得4a+c的值,进一步求得4a+c1的值【解答】解:把点(2,4)代入y=ax23x+c,得4a+6+c=4,4a+c=2,4a+c1=3,故答案为3【点评】此题考查了二次函数图象上点的坐标特征,点在函数上,将点代入解析式即可17(2016泸州)若二次函数y=2x24x1的图象与x轴交于A(x1,

24、0)、B(x2,0)两点,则+的值为4【分析】设y=0,则对应一元二次方程的解分别是点A和点B的横坐标,利用根与系数的关系即可求出+的值【解答】解:设y=0,则2x24x1=0,一元二次方程的解分别是点A和点B的横坐标,即x1,x2,x1+x2=2,x1,x2=,+=4,故答案为:4【点评】本题考查了二次函数与一元二次方程的关系,掌握二次函数与x轴的交点的横坐标就是对应的一元二次方程的根是解题关键18(2016普陀区一模)如果抛物线y=2x2+mx+n的顶点坐标为(1,3),那么m+n的值等于1【分析】根据抛物线y=2x2+mx+n的顶点坐标为(1,3),可知,从而可以得到m、n的值,进而可以

25、得到m+n的值【解答】解:抛物线y=2x2+mx+n的顶点坐标为(1,3),解得m=4,n=5,m+n=4+5=1故答案为:1【点评】本题考查二次函数的性质,解题的关键是明确二次函数的顶点坐标公式19(2016河东区一模)已知抛物线y=ax2+bx+c过(2,3),(4,3)两点,那么抛物线的对称轴为直线x=1【分析】根据二次函数的图象具有对称性,由抛物线y=ax2+bx+c过(2,3),(4,3)两点,可以得到它的对称轴,本题得以解决【解答】解:抛物线y=ax2+bx+c过(2,3),(4,3)两点,抛物线的对称轴为直线x=,故答案为:x=1【点评】本题考查二次函数的性质,解题的关键是明确二

26、次函数的性质,知道二次函数的图象具有对称性20(2016长春模拟)如图,在平面直角坐标系中,过抛物线y=a(x+1)22(x0,a为常数)的顶点A作ABx轴于点B,过抛物线y=a(x1)2+2(x0,a为常数)的顶点C作CDx轴于点D,连结AD、BC则四边形ABCD的面积为4【分析】根据题意知道两个抛物线关于原点对称,从而判断四边形ABCD的形状为平行四边形,然后根据抛物线的顶点坐标确定CD和BD的长,利用平行四边形的面积计算方法确定面积即可【解答】解:抛物线y=a(x+1)22(x0,a为常数)与抛物线y=a(x1)2+2(x0,a为常数)关于原点对称,四边形ABCD为平行四边形,抛物线y=

27、a(x+1)22(x0,a为常数)的顶点坐标为(1,2),抛物线y=a(x1)2+2(x0,a为常数)的顶点坐标为(1,2),BD=2,CD=2,S四边形ABCD=BDCD=22=4,故答案为:4【点评】本题考查了二次函数的性质,解题的关键是根据题意确定四边形ABCD的形状,难度不大三解答题(共10小题)21(2016济南校级模拟)【分析】先把各特殊角的三角函数值代入,再根据实数混合运算的法则进行计算即可【解答】解:原式=14+=+=【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键22(2016江西模拟)如图,ABC中,ACB=90,sinA=,BC=8,D是

28、AB中点,过点B作直线CD的垂线,垂足为点E(1)求线段CD的长;(2)求cosABE的值【分析】(1)在ABC中根据正弦的定义得到sinA=,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;(2)在RtABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到SBDC=SADC,则SBDC=SABC,即CDBE=ACBC,于是可计算出BE=,然后在RtBDE中利用余弦的定义求解【解答】解:(1)在ABC中,ACB=90,sinA=,而BC=8,AB=10,D是AB中点,CD=AB=5;(2)在RtABC中,AB=10,BC=8,AC=6,D是AB中点,BD

29、=5,SBDC=SADC,SBDC=SABC,即CDBE=ACBC,BE=,在RtBDE中,cosDBE=,即cosABE的值为【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形也考查了直角三角形斜边上的中线性质和三角形面积公式23(2015秋道外区期末)如图,在O中,D、E分别是半径OA、OB的中点,C是O上一点,CD=CE(1)求证:=;(2)若AOB=120,CD=2,求半径OA的长【分析】(1)连接OC,由SSS证明OCDOCE,得出对应角相等COD=COE,由圆心角,弧,弦的关系即可得出结论;(2)连接AC,证明AOC是等边三角形,得出CDOA

30、,由三角函数求出OC,即可得出OA【解答】解:(1)证明:连接OC,如图1所示:D、E分别是半径OA、OB的中点,OA=OB,OD=OE,在OCD和OCE中,OCDOCE(SSS),COD=COE,=;(2)连接AC,如图2所示:AOB=120,COD=COE=60,OC=OA,AOC是等边三角形,D是OA的中点,CDOA,OC=4,OA=4【点评】本题考查的是圆心角,弧,弦的关系、全等三角形的判定与性质、三角函数;证明三角形全等和等边三角形是解决问题的关键24(2016青海)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线

31、与地面夹角是45时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上)(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离(参考数据:sin22,cos22,tan22)【分析】(1)首先构造直角三角形AEM,利用tan22=,求出即可;(2)利用RtAME中,cos22=,求出AE即可【解答】解:(1)如图,过点E作EMAB,垂足为M设AB为xRtABF中,AFB=45,BF=AB=x,BC=BF+FC=x+25,在RtAEM中,AEM=22,AM=ABBM=ABCE=x2,tan22=,则=,解得:x=20即教学楼的高20m(2)由(

32、1)可得ME=BC=x+25=20+25=45在RtAME中,cos22=AE=,即A、E之间的距离约为48m【点评】此题主要考查了解直角三角形的应用,根据已知得出tan22=是解题关键25(2016六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,D=90,第一次探测到一辆轿车从B点匀速向D点行驶,测得ABD=31,2秒后到达C点,测得ACD=50(tan310.6,tan501.2,结果精确到1m)(1)求B,C的距离(2)通过计算,判断此轿车是否超速【分析】(1)在直角三角

33、形ABD与直角三角形ACD中,利用锐角三角函数定义求出BD与CD的长,由BDCD求出BC的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断【解答】解:(1)在RtABD中,AD=24m,B=31,tan31=,即BD=40m,在RtACD中,AD=24m,ACD=50,tan50=,即CD=20m,BC=BDCD=4020=20m,则B,C的距离为20m;(2)根据题意得:202=10m/s15m/s,则此轿车没有超速【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键26(2016宁波)如图,已知抛物线y=x2+mx+3与x轴交于A,B两点,与y轴交于点C

34、,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=x2+mx+3得:0=32+3m+3,解得:m=2,y=x2+2x+3=(x1)2+4,顶点坐标为:(1,4)(2)连接BC交抛物线对称轴l于点P,则此时PA+PC

35、的值最小,设直线BC的解析式为:y=kx+b,点C(0,3),点B(3,0),解得:,直线BC的解析式为:y=x+3,当x=1时,y=1+3=2,当PA+PC的值最小时,点P的坐标为:(1,2)【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题注意找到点P的位置是解此题的关键27(2016大连)如图,抛物线y=x23x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标【分析】(1)利用坐标轴上点的特点求出A、B、C点的坐标,再用待定系数法求得

36、直线BC的解析式;(2)设点D的横坐标为m,则纵坐标为(m,),E点的坐标为(m,),可得两点间的距离为d=,利用二次函数的最值可得m,可得点D的坐标【解答】解:(1)抛物线y=x23x+与x轴相交于A、B两点,与y轴相交于点C,令y=0,可得x=或x=,A(,0),B(,0);令x=0,则y=,C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,解得:,直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),E点的坐标为(m,m),设DE的长度为d,点D是直线BC下方抛物线上一点,则d=m+(m23m+),整理得,d=m2+m,a=10,当m=时,d最大=,D点的坐

37、标为(,)【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出D的坐标,利用二次函数最值得D点坐标是解答此题的关键28(2016龙东地区)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+mkx+b的x的取值范围【分析】(1)先利用待定系数法先求出m,再求出点B坐标,利用方程组求出一次函数解析式(2)根据二次函数的图象在一次函数的图象上面即可写出自变量x的取值范围【解答】解:(1)抛物

38、线y=(x+2)2+m经过点A(1,0),0=1+m,m=1,抛物线解析式为y=(x+2)21=x2+4x+3,点C坐标(0,3),对称轴x=2,B、C关于对称轴对称,点B坐标(4,3),y=kx+b经过点A、B,解得,一次函数解析式为y=x1,(2)由图象可知,写出满足(x+2)2+mkx+b的x的取值范围为x4或x1【点评】本题考查二次函数与不等式、待定系数法等知识,解题的关键是灵活运用待定系数法确定好像解析式,学会利用图象根据条件确定自变量取值范围,属于中考常考题型29(2016郴州)某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克

39、降价1元,则每天可所多售出20千克(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?【分析】(1)根据“每天利润=每天销售质量每千克的利润”即可得出y关于x的函数关系式;(2)将y=960代入(1)中函数关系式中,得出关于x的一元二次方程,解方程即可得出结论【解答】解:(1)根据题意得:y=(200+20x)(6x)=20x280x+1200(2)令y=20x280x+1200中y=960,则有960=20x280x+1200,即x2+4x12=0,解得:x=6(舍去),或x=2答:若要平均每天盈利960元,则每千克

40、应降价2元【点评】本题考查了二次函数的应用,解题的关键是:(1)根据数量关系找出函数关系式;(2)将y=960代入函数关系式得出关于x的一元二次方程本题属于基础题,难度不大,解决该题型题目时结合数量关系找出函数关系式是关键30(2016安顺)如图,抛物线经过A(1,0),B(5,0),C(0,)三点(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由【分析】(1)设抛物线的解析式为y=ax2+bx+c(a0),再

41、把A(1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a0),A(1,0),B(5,0),C(0,)三点在抛物线上,解得抛物线的解析式为:y=x22x;(2)抛物线的解析式为:y=x22x,其对称轴为直线x=2,连接BC,如图1所示,B(5,0),C(0,),设直线BC的解析式为y=kx+b(k0),解得,直线BC的解析式为y=x,当x=2时,y=1=,P(2,);(3)存在如图2所示,当点N在x轴下方时,抛物线的对称轴为直线x=2,C(0,),N1(4,);当点N在x轴上方时,如图,过点N2作N2Dx轴于点D,在AN2D与M2CO中,AN2DM2CO(ASA),N2D=OC=,即N2点的纵坐标为x22x=,解得x=2+或x=2,N2(2+,),N3(2,)综上所述,符合条件的点N的坐标为(4,),(2+,)或(2,)【点评】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 北师大版(2024) > 九年级下册
版权提示 | 免责声明

1,本文(北师大版九年级下册数学期中试卷(DOC 28页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|