1、实用标准文案高中数学必修二 第三章直线方程测试题 考试时间:100分钟 总分:150分 一选择题(共55分,每题5分)1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为( )A.3 B.-2 C. 2 D. 不存在2过点且平行于直线的直线方程为( )A BCD3. 在同一直角坐标系中,表示直线与正确的是( ) A B C D4若直线x+ay+2=0和2x+3y+1=0互相垂直,则a=( )A B C D5.过(x1,y1)和(x2,y2)两点的直线的方程是( )L36、若图中的直线L1、L2、L3的斜率分别为K1、K2、K3则( )L2 A、K1K2K3B、K2K1K3ox
2、C、K3K2K1L1 D、K1K3K2 7、直线2x+3y-5=0关于直线y=x对称的直线方程为( )A、3x+2y-5=0 B、2x-3y-5=0C、3x+2y+5=0 D、3x-2y-5=08、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=09、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则( )A.a=2,b=5; B.a=2,b=; C.a=,b=5; D.a=,b=.10、直线2x-y=7与直线3x+2y-7=0的交点是( )A (3,-1) B (-1
3、,3) C (-3,-1) D (3,1)11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0 B 4x-3y-19=0C 3x-4y-16=0 D 3x+4y-8=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _ _;13两直线2x+3yk=0和xky+12=0的交点在y轴上,则k的值是14、两平行直线的距离是 。15空间两点M1(-1,0,3),M2(0,4,-1)间的距离是 三计算题(共71分)16、(15分)已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的
4、中点。(1)求AB边所在的直线方程;(2)求中线AM的长(3)求AB边的高所在直线方程。17、(12分)求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程。18.(12分) 直线与直线没有公共点,求实数m的值。19(16分)求经过两条直线和的交点,且分别与直线(1)平行,(2)垂直的直线方程。20、(16分)过点(,)的直线被两平行直线:与:所截线段的中点恰在直线上,求直线的方程高中数学必修二 第三章直线方程测试题答案1-5 BACAC 6-10 AADBA 11 A 12.y=2x或x+y-3=0 13.6 14、 15.16、解:(1)由两点式写方程得 ,3分即
5、6x-y+11=04分或 直线AB的斜率为 1直线AB的方程为 3分 即 6x-y+11=04分(2)设M的坐标为(),则由中点坐标公式得 故M(1,1)6分8分(3)因为直线AB的斜率为kAB=(3分)设AB边的高所在直线的斜率为k则有(6分)所以AB边高所在直线方程为(10分)17解:设直线方程为则有题意知有又有此时 18方法(1)解:由题意知方法(2)由已知,题设中两直线平行,当当m=0时两直线方程分别为x+6=0,-2x=0,即x=-6,x=0,两直线也没有公共点,综合以上知,当m=-1或m=0时两直线没有公共点。19解:由,得;.2与的交点为(1,3)。.3(1) 设与直线平行的直线
6、为4则,c1。.6所求直线方程为。7方法2:所求直线的斜率,且经过点(1,3),.5求直线的方程为,. .6即。. 7(2) 设与直线垂直的直线为8则,c7。.9所求直线方程为。.10方法2:所求直线的斜率,且经过点(1,3),.8求直线的方程为,. .9即 。. .1020、解:设线段的中点P的坐标(a,b),由P到L1,、L2的距离相等,得经整理得,又点P在直线上,所以解方程组 得 即点P的坐标(-3,-1),又直线L过点(,)所以直线的方程为,即高中数学必修二 圆与方程练习题一、选择题. 圆关于原点对称的圆的方程为 ( ) A. B. C. D. 2. 若为圆的弦的中点,则直线的方程是(
7、 ) A. B. C. D. 3. 圆上的点到直线的距离最大值是( )A. B. C. D. 4. 将直线,沿轴向左平移个单位,所得直线与圆相切,则实数的值为()A. B. C. D. 5. 在坐标平面内,与点距离为,且与点距离为的直线共有( )A. 条 B. 条 C. 条 D. 条6. 圆在点处的切线方程为( )A. B. C. D. 二、填空题1. 若经过点的直线与圆相切,则此直线在轴上的截距是 . .2. 由动点向圆引两条切线,切点分别为,则动点的轨迹方为 . 3. 圆心在直线上的圆与轴交于两点,则圆的方程为 . . 已知圆和过原点的直线的交点为则的值为_. 5. 已知是直线上的动点,是
8、圆的切线,是切点,是圆心,那么四边形面积的最小值是_. 三、解答题1. 点在直线上,求的最小值. 2. 求以为直径两端点的圆的方程. 3. 求过点和且与直线相切的圆的方程. 4. 已知圆和轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程. 高中数学必修二 圆与方程练习题答案一、选择题 1. A 关于原点得,则得2. A 设圆心为,则3. B 圆心为4. A 直线沿轴向左平移个单位得圆的圆心为5. B 两圆相交,外公切线有两条6. D 的在点处的切线方程为二、填空题1. 点在圆上,即切线为2. 3. 圆心既在线段的垂直平分线即,又在 上,即圆心为,4. 设切线为,则5. 当垂直于已知直线时,四边形的面积最小三、解答题1. 解:的最小值为点到直线的距离 而,. 2. 解: 得3. 解:圆心显然在线段的垂直平分线上,设圆心为,半径为,则,得,而. 4. 解:设圆心为半径为,令而,或文档