1、9.1.1 系统误差的数字修正方法系统误差的数字修正方法9.1.2 随机误差的数字滤波方法随机误差的数字滤波方法9.1.3 动态补偿方法动态补偿方法上一页下一页返 回1ppt课件l检测系统本身的误差检测系统本身的误差(a)工作原理上,如传感器或电路的非线性的输入、输出关系;工作原理上,如传感器或电路的非线性的输入、输出关系;(b)机械结构上,如阻尼比太小等;机械结构上,如阻尼比太小等;(c)制造工艺上,如加工精度不高,贴片不准,装配偏差等;制造工艺上,如加工精度不高,贴片不准,装配偏差等;(d)功能材料上,如热胀冷缩,迟滞,非线性等。功能材料上,如热胀冷缩,迟滞,非线性等。l外界环境影响外界环
2、境影响 例如,温度,压力和湿度等的影响。例如,温度,压力和湿度等的影响。l人为因素人为因素 操作人员在使用仪表之前,没有调零、校正;读数误差等。操作人员在使用仪表之前,没有调零、校正;读数误差等。上一页下一页返 回2ppt课件l从时间角度,把误差分为静态误差和动态误差。从时间角度,把误差分为静态误差和动态误差。静态误差静态误差包括通常所说的系统误差和随机误差。其中,系统包括通常所说的系统误差和随机误差。其中,系统误差是指在相同条件下,多次测量同一量时,其大小和符号误差是指在相同条件下,多次测量同一量时,其大小和符号保持不变或按一定规律变化的误差。保持不变或按一定规律变化的误差。动态误差动态误差
3、是指检测系统输入与输出信号之间的差异。由于产是指检测系统输入与输出信号之间的差异。由于产生动态误差的原因不同,动态误差又可分为第一类和第二类。生动态误差的原因不同,动态误差又可分为第一类和第二类。第一类动态误差:第一类动态误差:因检测系统中各环节存在惯性、阻尼及非线因检测系统中各环节存在惯性、阻尼及非线性等原因,动态测试时造成的误差。性等原因,动态测试时造成的误差。第二类误差:第二类误差:因各种随时间改变的干扰信号所引起的动态误差因各种随时间改变的干扰信号所引起的动态误差。l针对不同的误差,有不同的修正方法;就是对同一误差,针对不同的误差,有不同的修正方法;就是对同一误差,也有多种修正方法。也
4、有多种修正方法。上一页下一页返 回3ppt课件1.1.利用校正曲线修正系统误差利用校正曲线修正系统误差 2 2用神经网络修正系统误差用神经网络修正系统误差3 3非线性特性的校正方法非线性特性的校正方法 上一页下一页返 回4ppt课件l通过实验校准通过实验校准(或称标定或称标定)来获得系统的校准曲线来获得系统的校准曲线(输入、输入、输出关系曲线输出关系曲线)。l校准校准:在标准状况下,利用一定等级的标准设备,为:在标准状况下,利用一定等级的标准设备,为系统提供标准的输入量,测试系统的输出。系统提供标准的输入量,测试系统的输出。l在整个量程范围内,选多点测试;在每个点上,测试在整个量程范围内,选多
5、点测试;在每个点上,测试多次,由此得出系统的输入、输出数据,列成表格或多次,由此得出系统的输入、输出数据,列成表格或绘出曲线。将曲线上各校准点的数据存入存储器的校绘出曲线。将曲线上各校准点的数据存入存储器的校准表格中,在实际测量时,测一个值,就到微处理器准表格中,在实际测量时,测一个值,就到微处理器去访问这个地址,读出其内容,即为被测量经修正过去访问这个地址,读出其内容,即为被测量经修正过的值。的值。上一页下一页返 回5ppt课件l对于值介于两个校准点与之间时,可以按最邻近的一对于值介于两个校准点与之间时,可以按最邻近的一个值或去查找对应的值,作为最后的结果。这个结果个值或去查找对应的值,作为
6、最后的结果。这个结果带有误差。此时,可以利用带有误差。此时,可以利用(分段直线拟合分段直线拟合)来提高准来提高准确度。校准点之间的内插,最简单的是线性内插。确度。校准点之间的内插,最简单的是线性内插。l当取当取)()()(11iiiiyyyyxxxx上一页下一页返 回1iiyyy6ppt课件上一页下一页返 回7ppt课件 传感器模型传感器模型)(txfz;Tktttt),.,(21环环 境境 参参 数数)(1tzfx;)(tzz;误差修正模型的输出误差修正模型的输出)()(1tzftz;xtzftzz)()(1;即误差修正模型的输出即误差修正模型的输出z与被测非电量与被测非电量x成线性关系成线
7、性关系,且与各环境参数无关。且与各环境参数无关。只要使误差修正模型只要使误差修正模型 ,即可实现传感器静态误差的综合修正。即可实现传感器静态误差的综合修正。)()(1tzftz;(912)上一页下一页返 回8ppt课件通常传感器模型及其反函数是复杂的,难以用数学式子描述。但是,可以通过实验测得传感器的实验数据集:TkiiiikiittttniRztx),.,(,.,2,1)(212:;根据前向神经网络具有很强的输入、输出非线性映射能力的特点,以实验数据集的和为输入样本,及对应的为输出样本,对神经网络进行训练,使神经网络逐步调节各个权值自动实现 上一页下一页返 回9ppt课件l因神经网络学习时,
8、加在输入端的数据太大,会使神因神经网络学习时,加在输入端的数据太大,会使神经元节点迅速进入饱和,导致网络出现麻痹现象。此经元节点迅速进入饱和,导致网络出现麻痹现象。此外,由于在神经网络中采用外,由于在神经网络中采用S型函数,输出范围为型函数,输出范围为(0,1),且很难达到,且很难达到0或或1。故在学习之前,应对数据进行。故在学习之前,应对数据进行归一化处理。归一化处理。)/()(minmaxminiiiiiDDDDD05.0)/()(9.0minmaxminoooooDDDDD(913)(914)式中,式中,Di、Do分别是欲作为神经网络输入、输出样本的原始数据分别是欲作为神经网络输入、输出
9、样本的原始数据 上一页下一页返 回10ppt课件(1)取传感器原始实验数据。取传感器原始实验数据。(2)由式由式(913)变换原始数据和,式变换原始数据和,式(914)变变换原始数据,得训练神经网络的输入、输出样本对。换原始数据,得训练神经网络的输入、输出样本对。(3)确定神经网络输入、输出端数量、各层节点数、确定神经网络输入、输出端数量、各层节点数、和的值。网络输入端数量与输入层节点数量相同,和的值。网络输入端数量与输入层节点数量相同,等于环境参数个数加等于环境参数个数加1。输出端数量与输出层节点。输出端数量与输出层节点数均为数均为1。隐层节点数根据被测非电量、环境参数。隐层节点数根据被测非
10、电量、环境参数及传感器输出之间的关系的复杂程度而定,关系复及传感器输出之间的关系的复杂程度而定,关系复杂取多些,反之取少些。和一般取杂取多些,反之取少些。和一般取01。(4)训练神经网络得到误差修正模型。训练神经网络得到误差修正模型。上一页下一页返 回11ppt课件l传感器和自动检测系统的非线性误差传感器和自动检测系统的非线性误差(或称线性度或称线性度)是一是一种系统误差,是用其输入、输出特性曲线与拟合直线种系统误差,是用其输入、输出特性曲线与拟合直线之间最大偏差与其满量程输出之比来定义的。之间最大偏差与其满量程输出之比来定义的。l拟合直线:拟合直线:依据若干实验数据,利用一定的数学方法依据若
11、干实验数据,利用一定的数学方法得到的直线。当采用的数学方法不同时,拟合直线不得到的直线。当采用的数学方法不同时,拟合直线不同,以此为基准得出的线性度也不同。同,以此为基准得出的线性度也不同。l输入输入、输出关系呈线性的优点、输出关系呈线性的优点:可用线性叠加原理,分析、计算方便;可用线性叠加原理,分析、计算方便;输出信号的处理方便,只要知道输出量的起始值和满量程值,输出信号的处理方便,只要知道输出量的起始值和满量程值,就可确定其余的输出值,刻度盘可按线性刻度;就可确定其余的输出值,刻度盘可按线性刻度;在工业过程控制中常用的电动单元组合仪表,由于单元之间在工业过程控制中常用的电动单元组合仪表,由
12、于单元之间用标准信号联系,要求仪表具有线性特性。用标准信号联系,要求仪表具有线性特性。上一页下一页返 回12ppt课件l非线性校正方法很多,例如:非线性校正方法很多,例如:利用校准曲线用查表法作修正;利用校准曲线用查表法作修正;利用分段折线法进行校正;利用分段折线法进行校正;用整段高次多项式近似。用整段高次多项式近似。神经网络的方法。神经网络的方法。上一页下一页返 回13ppt课件l整段校正法也称整段多项式近似法,其核心问整段校正法也称整段多项式近似法,其核心问题是多项式的生成,即直接利用非线性方程进题是多项式的生成,即直接利用非线性方程进行校正。行校正。l由标定传感器所得到的实测数据来推出反
13、映输由标定传感器所得到的实测数据来推出反映输入、输出关系的多项式,并要求这个多项式的入、输出关系的多项式,并要求这个多项式的次数尽量低、与实际特性的误差尽量小。这实次数尽量低、与实际特性的误差尽量小。这实质上是个曲线拟合问题。质上是个曲线拟合问题。上一页下一页返 回14ppt课件对于对实验数据对于对实验数据),(),.,(),(2211nnyxyxyx12321.)(mmxaxaxaaxP)(nm min)(12niiiyxP使得使得 构造多项式构造多项式 根据最小二乘原理,要使根据最小二乘原理,要使为最小,按通常求极值的方法,为最小,按通常求极值的方法,取对的偏导数,并令其为零,得到正则方程
14、组,解出取对的偏导数,并令其为零,得到正则方程组,解出ai在实际修正中,预先把方程的系数存在存储器中。在实际修正中,预先把方程的系数存在存储器中。单片机进行校正时,将测量值与存储器中的系数进行运算,单片机进行校正时,将测量值与存储器中的系数进行运算,就可获得实际被测量。就可获得实际被测量。上一页下一页返 回15ppt课件传感器的静态输入、输出特性可用一个多项式表示传感器的静态输入、输出特性可用一个多项式表示.54332210oipiiiixxkxxkxkxkxkky可简化为可简化为 332210iiixkxkxkky实际应用中往往需要根据所得的输出量实际应用中往往需要根据所得的输出量y,求出输
15、入非电量,求出输入非电量xi。而由而由y表示的表示的xi表达式为表达式为332210ykykykkxi通过静态标定,事先得到一组传感器的输入、输出数据,通过静态标定,事先得到一组传感器的输入、输出数据,然后用函数联接型神经网络,通过迭代得到然后用函数联接型神经网络,通过迭代得到ki这些系数。这些系数。上一页下一页返 回16ppt课件利用输入数据集利用输入数据集()和输出和输出yi,经神经网络的学习算法,经神经网络的学习算法不断调整权值不断调整权值Wn(n=0,1,2,3)。32,1iiixxx估计输出为估计输出为30)()(nnniikWxky误差为误差为)()()(kykykeiii权值调整
16、为权值调整为 niiiiixkekWkW)()()1(第第i个输入数据的期望输出、估计输出个输入数据的期望输出、估计输出 Wn(k)网络在第网络在第k步的第步的第n个联接权,个联接权,ai学习因子学习因子 经过学习,当权值趋于稳定时,所得的经过学习,当权值趋于稳定时,所得的Wn(n=0,1,2,3)就是系数就是系数k0、k1、k2、k3。上一页下一页返 回17ppt课件l数字滤波:数字滤波:通过特定的计算程序处理,通过特定的计算程序处理,降低干扰信号在有用信号中的比例,故降低干扰信号在有用信号中的比例,故实质上是一种程序滤波。实质上是一种程序滤波。l数字滤波可以对各种干扰信号,甚至极数字滤波可
17、以对各种干扰信号,甚至极低频率的信号滤波。低频率的信号滤波。l数字滤波由于稳定性高,滤波器参数修数字滤波由于稳定性高,滤波器参数修改方便,因此得到广泛应用。改方便,因此得到广泛应用。上一页下一页返 回18ppt课件(1)不需要增加任何硬设备,只要程序在进入数据处理和不需要增加任何硬设备,只要程序在进入数据处理和控制算法之前,附加一段数字滤波程序即可。控制算法之前,附加一段数字滤波程序即可。(2)不存在阻抗匹配问题。不存在阻抗匹配问题。(3)可以对频率很低,例如可以对频率很低,例如0.01Hz的信号滤波,而模拟的信号滤波,而模拟RC滤波器由于受电容容量的影响,频率不能太低。滤波器由于受电容容量的
18、影响,频率不能太低。(4)对于多路信号输入通道,可以共用一个滤波器,从而对于多路信号输入通道,可以共用一个滤波器,从而降低仪表的硬件成本。降低仪表的硬件成本。(5)只要适当改变滤波器程序或参数,就可方便地改变滤只要适当改变滤波器程序或参数,就可方便地改变滤波特性,这对于低频脉冲干扰和随机噪声的克服特别波特性,这对于低频脉冲干扰和随机噪声的克服特别有效。有效。上一页下一页返 回19ppt课件1 限幅滤波限幅滤波 2 平滑滤波平滑滤波 3 算术平均滤波法算术平均滤波法 4 递推平均滤波法递推平均滤波法 5 加权移动平均滤波法加权移动平均滤波法 6 一阶惯性滤波一阶惯性滤波 7 复合滤波复合滤波 上
19、一页下一页返 回20ppt课件l当采样信号由于随机干扰而引起严重失真时,可当采样信号由于随机干扰而引起严重失真时,可采用限幅滤波。根据经验,确定出两次采样信号采用限幅滤波。根据经验,确定出两次采样信号可能出现的最大偏差。可能出现的最大偏差。l限幅滤波限幅滤波:把两次相邻的采样值相减,求出其增:把两次相邻的采样值相减,求出其增量量(以绝对值表示以绝对值表示),然后与两次采样允许的最大,然后与两次采样允许的最大差值进行比较。如果小于或等于,则取本次采样差值进行比较。如果小于或等于,则取本次采样值;如果大于,则仍取上次采样值作为采样值。值;如果大于,则仍取上次采样值作为采样值。l应用:应用:变化比较
20、缓慢的参数测量,如温度、物位变化比较缓慢的参数测量,如温度、物位等。也可以在大电流、大电感负载切断时,即干等。也可以在大电流、大电感负载切断时,即干扰的特点为时间短,但幅值却很大的情况下使用。扰的特点为时间短,但幅值却很大的情况下使用。上一页下一页返 回21ppt课件l中位值滤波是对某一被测量连续采样中位值滤波是对某一被测量连续采样N次次(一般一般N取为奇数取为奇数),然后把,然后把N次采样值按大小排列,次采样值按大小排列,取中间值为本次采样值。中位值滤波能有效地取中间值为本次采样值。中位值滤波能有效地克服偶然因素引起的波动。克服偶然因素引起的波动。l对于温度、液位等缓慢变化的被测量,采用此对
21、于温度、液位等缓慢变化的被测量,采用此法能收到良好的滤波效果,但对于流量、压力法能收到良好的滤波效果,但对于流量、压力等变化较快的被测量一般不宜采用中位值滤波。等变化较快的被测量一般不宜采用中位值滤波。上一页下一页返 回22ppt课件l叠加在有用数据上的随机噪声在很多情叠加在有用数据上的随机噪声在很多情况下可以近似地认为是白噪声。白噪声况下可以近似地认为是白噪声。白噪声具有一个很重要的统计特性,即它的统具有一个很重要的统计特性,即它的统计平均值为零。因此可以求平均值的办计平均值为零。因此可以求平均值的办法来消除随机误差,这就是所谓平滑滤法来消除随机误差,这就是所谓平滑滤波。波。平滑滤波有以下几
22、种。平滑滤波有以下几种。上一页下一页返 回23ppt课件l算术平均滤波法适用于对一般的具有随机干扰的信号算术平均滤波法适用于对一般的具有随机干扰的信号进行滤波。这种信号的特点是信号本身在某一数值范进行滤波。这种信号的特点是信号本身在某一数值范围附近上下波动,如测量流量、液位时经常遇到这种围附近上下波动,如测量流量、液位时经常遇到这种情况。情况。l算术平均滤波是要按输入的算术平均滤波是要按输入的N个采样数据个采样数据xi,寻找这样,寻找这样一个一个y,使,使y与各采样值之间的偏差的平方和最小,即与各采样值之间的偏差的平方和最小,即使使上一页下一页返 回NiixyE12)(min24ppt课件由一
23、元函数求极值的原理,可得由一元函数求极值的原理,可得NiixNy11算术平均滤波的算式算术平均滤波的算式 设第设第i次测量的测量值包含信号成分次测量的测量值包含信号成分Si和噪声成分和噪声成分ni,则进行则进行N次测量的信号成分之和为次测量的信号成分之和为NiiSNS1噪声的强度是用均方根来衡量的,当噪声为随机信号时,噪声的强度是用均方根来衡量的,当噪声为随机信号时,进行次测量的噪声强度之和为进行次测量的噪声强度之和为nNnNii12式中,式中,S、n分别为进行分别为进行N次测量后信号和噪声的平均幅度。次测量后信号和噪声的平均幅度。上一页下一页返 回25ppt课件对对N次测量进行算术平均后的信
24、噪比为次测量进行算术平均后的信噪比为nSNnNSN式中,式中,S/n是求算术平均值前的信噪比,是求算术平均值前的信噪比,因此采用算术平均值后,信噪比提高了因此采用算术平均值后,信噪比提高了 倍。倍。N(9117)由式可知,算术平均值法对信号的平滑滤波程度完全取决于由式可知,算术平均值法对信号的平滑滤波程度完全取决于N。当当N较大时:较大时:平滑度高,但灵敏度低,外界信号的变化对测量计算结果的影响小;平滑度高,但灵敏度低,外界信号的变化对测量计算结果的影响小;当当N较小时:较小时:平滑度低,但灵敏度高。应按具体情况选取平滑度低,但灵敏度高。应按具体情况选取N。如对一般流量测量,可取如对一般流量测
25、量,可取N=812;对压力等测量,可取;对压力等测量,可取N=4。上一页下一页返 回26ppt课件l算术平均滤波方法每计算一次数据,需测量算术平均滤波方法每计算一次数据,需测量N次,对于测量速次,对于测量速度较慢或要求数据计算速率较高的实时系统,则无法使用。度较慢或要求数据计算速率较高的实时系统,则无法使用。l递推平均滤波法:递推平均滤波法:在存储器中,开辟一个区域作为暂存队列在存储器中,开辟一个区域作为暂存队列使用,队列的长度固定为使用,队列的长度固定为N,每进行一次新的测量,把测量结,每进行一次新的测量,把测量结果放入队尾,而扔掉原来队首的那个数据,这样在队列中始果放入队尾,而扔掉原来队首
26、的那个数据,这样在队列中始终有个终有个“最新最新”的数据。的数据。上一页下一页返 回10)(1)1(.)2()1()()(NiikxNNNkxkxkxkxky递推平均项数的选取是比较重要的环节,递推平均项数的选取是比较重要的环节,N选得过大,平均效果好,选得过大,平均效果好,但是,对参数变化的反应不灵敏;但是,对参数变化的反应不灵敏;N选得过小,滤波效果不显著。选得过小,滤波效果不显著。关于关于N的选择与算术平均滤波法相同。的选择与算术平均滤波法相同。27ppt课件l递推平均滤波法最大的问题是随着随机误差的消除,有用信号的递推平均滤波法最大的问题是随着随机误差的消除,有用信号的灵敏度也降低了。
27、因为我们假设对于灵敏度也降低了。因为我们假设对于N次内的所有采样值,在结次内的所有采样值,在结果中所占比重是均等的。用这样的滤波算法,对于时变信号会引果中所占比重是均等的。用这样的滤波算法,对于时变信号会引入滞后。入滞后。N越大,滞后越严重。越大,滞后越严重。l为了增加新的采样数据在滑动平均中的比重,以提高系统对当前为了增加新的采样数据在滑动平均中的比重,以提高系统对当前采样值中所受干扰的灵敏度,可以对不同时刻的采样值加以不同采样值中所受干扰的灵敏度,可以对不同时刻的采样值加以不同的权的权,通常越接近现时刻的数据,权取得越大。然后再相加求平均,通常越接近现时刻的数据,权取得越大。然后再相加求平
28、均,这种方法就是这种方法就是加权移动平均法加权移动平均法。上一页下一页返 回28ppt课件N项加权移动平均滤波算法为项加权移动平均滤波算法为101NiiNixcNy110,.,NCCC为常数,且满足以下条件:为常数,且满足以下条件:1.110NCCC0.110NCCC常系数的选取有多种方法,其中最常用的是加权系数法。常系数的选取有多种方法,其中最常用的是加权系数法。式中,式中,y为第为第N次采样值经滤波后的输出;次采样值经滤波后的输出;x N-i为未经滤波的第为未经滤波的第N-i次采样值;次采样值;上一页下一页返 回29ppt课件l设设为被测对象的纯滞后时间,且为被测对象的纯滞后时间,且l因为
29、因为越大,越大,越小,则给予新的采样值的权系数就越大,而给先越小,则给予新的采样值的权系数就越大,而给先前采样值的权系数就越小,从而提高了新的采样值在平均过程中前采样值的权系数就越小,从而提高了新的采样值在平均过程中的比重。的比重。l所以,加权移动平均滤波适用于有较大纯滞后时间常数的被测对所以,加权移动平均滤波适用于有较大纯滞后时间常数的被测对象和采样周期较短的测量系统,而对于纯滞后时间常数较小,采象和采样周期较短的测量系统,而对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,则不能迅速反映系统当前所受干样周期较长,变化缓慢的信号,则不能迅速反映系统当前所受干扰的严重程度,滤波效果较差。扰
30、的严重程度,滤波效果较差。)1(2.1Neee)1(110,.,1NNeCeCC上一页下一页返 回30ppt课件l在检测系统的电路中常常伴随有电源干扰及工业干扰,在检测系统的电路中常常伴随有电源干扰及工业干扰,这些干扰特点是频率很低这些干扰特点是频率很低(例如频率为例如频率为0.01Hz),对这,对这样低频的干扰信号,采用样低频的干扰信号,采用RC滤波显然是不适宜的,因滤波显然是不适宜的,因为为C太大,很难做到。但是,用数字滤波很容易解决。太大,很难做到。但是,用数字滤波很容易解决。假设一阶假设一阶RC滤波器的输入电压为滤波器的输入电压为x(t),输出为,输出为y(t),则,则上一页下一页返
31、回)()()(txtydttdyRC(9124)31ppt课件设采样时间间隔足够小,将式设采样时间间隔足够小,将式(9124)离散为离散为)()()1()(tnxtnyttnytny式中,式中,=RC为时间常数。即为时间常数。即 1)1(nnnytxytnnnQxyQy1)1(ttQ通过实际运行来确定时间常数通过实际运行来确定时间常数,不断地计算出,不断地计算出值,值,当低频周期性噪声减至最弱时,即为该滤波器的当低频周期性噪声减至最弱时,即为该滤波器的值。值。一阶惯性滤波的缺点:一阶惯性滤波的缺点:造成信号的相位滞后,滞后相位的大小与造成信号的相位滞后,滞后相位的大小与Q值有关。值有关。如果相
32、位滞后太大,还必须采取其它补救措施。如果相位滞后太大,还必须采取其它补救措施。上一页下一页返 回32ppt课件l在实际应用中,所受到的随机扰动往往不是单在实际应用中,所受到的随机扰动往往不是单一的,有时即要消除脉冲扰动的影响,又要作一的,有时即要消除脉冲扰动的影响,又要作数据平滑。因此,在实际中往往把前面介绍的数据平滑。因此,在实际中往往把前面介绍的两种或两种以上的滤波方法结合在一起使用,两种或两种以上的滤波方法结合在一起使用,形成所谓的复合滤波,例如,防脉冲扰动平均形成所谓的复合滤波,例如,防脉冲扰动平均值滤波算法就是一种实例。值滤波算法就是一种实例。l算法的特点:算法的特点:l先用中位值滤
33、波算法滤掉采样值中的脉冲干扰,先用中位值滤波算法滤掉采样值中的脉冲干扰,然后把剩下的各采样值进行滑动平均滤波。然后把剩下的各采样值进行滑动平均滤波。上一页下一页返 回33ppt课件l如果如果 ,其中其中 x1,xN和分别是所有采样值中的最小值和最大值,则和分别是所有采样值中的最小值和最大值,则Nxxx.21143 N2.132NxxxyN优点:优点:这种滤波方法兼容了滑动平均滤波算法和中位值滤波算法的,这种滤波方法兼容了滑动平均滤波算法和中位值滤波算法的,无论是对缓慢变化的过程变量,还是快速变化的过程变量,无论是对缓慢变化的过程变量,还是快速变化的过程变量,都能起到较好的滤波效果。都能起到较好
34、的滤波效果。在一个检测系统中究竟应选用哪种滤波算法,在一个检测系统中究竟应选用哪种滤波算法,取决于使用场合及过程中所含随机干扰的情况。取决于使用场合及过程中所含随机干扰的情况。上一页下一页返 回34ppt课件 随着科技生产的发展,对自动检测和仪器仪表提出了更随着科技生产的发展,对自动检测和仪器仪表提出了更高要求,要求测量一些瞬变的非电量。高要求,要求测量一些瞬变的非电量。同时,传感器广泛应用于生产过程的检测,作为控制系同时,传感器广泛应用于生产过程的检测,作为控制系统中提供信息的单元,要能迅速反映被控参量的变化,统中提供信息的单元,要能迅速反映被控参量的变化,否则,整个控制系统就无法正常工作。
35、否则,整个控制系统就无法正常工作。在许多生产工艺中,反应速度加快了,设备结构尺寸减在许多生产工艺中,反应速度加快了,设备结构尺寸减小了,即控制对象的时间常数日益减小,这就需要选择小了,即控制对象的时间常数日益减小,这就需要选择快速的检测元件。快速的检测元件。传感器的阻尼比太小,阶跃响应振荡剧烈,达到稳态的传感器的阻尼比太小,阶跃响应振荡剧烈,达到稳态的时间长。时间长。传感器的工作频带窄,对被测信号中的高频分量没有反传感器的工作频带窄,对被测信号中的高频分量没有反应,以致动态响应速度慢。应,以致动态响应速度慢。上一页下一页返 回35ppt课件1、在传感器本身想办法,改变传感器的结构、参数在传感器
36、本身想办法,改变传感器的结构、参数和设计。和设计。2、在传感器输出信号的后续处理方面想办法,设计在传感器输出信号的后续处理方面想办法,设计用于动态补偿的模拟或数字滤波器用于动态补偿的模拟或数字滤波器(通常称为动态补通常称为动态补偿器偿器),对传感器的信号进行校正,改善其动态性能。,对传感器的信号进行校正,改善其动态性能。进行传感器动态补偿器设计的方法进行传感器动态补偿器设计的方法:零极点配置法、零极点配置法、系统辨识法系统辨识法 神经网络方法等。神经网络方法等。上一页下一页返 回36ppt课件l传感器的动态特性与其传递函数的极点位置密切相关。传感器的动态特性与其传递函数的极点位置密切相关。例如
37、,对于一个属于二阶系统的传感器,其传递函数例如,对于一个属于二阶系统的传感器,其传递函数为为上一页下一页返 回)()(bjasbjasksH当动态响应不满足要求时,可在传感器后串接一个补偿器。当动态响应不满足要求时,可在传感器后串接一个补偿器。222)()()()(nnmmbsskbjasbjasjbasjbaskbjasbjassH)ba/(knm222式中式中 。选择。选择和和 n来调整新加入的极点位置,来调整新加入的极点位置,而原来的极点将被消去,使传感器的动态特性得以改善。而原来的极点将被消去,使传感器的动态特性得以改善。37ppt课件AD590集成温度传感器可以等效为一阶系统集成温度
38、传感器可以等效为一阶系统175.611)(sTsksH传感器的时间常数较大,响应速度在某些场合不能满足要求。传感器的时间常数较大,响应速度在某些场合不能满足要求。设计动态补偿器为设计动态补偿器为T由实验测定由实验测定 11)(sTTssHb1)(sTksHd经过动态补偿后,等效系统经过动态补偿后,等效系统(传感器和补偿器的组合传感器和补偿器的组合)为为因为因为TT,所以等效系统的响应速度比原传感器的快。,所以等效系统的响应速度比原传感器的快。上一页下一页返 回38ppt课件l设传感器为二阶系统,其传递函数为设传感器为二阶系统,其传递函数为21221)(asasbsbsH有两种方法构造补偿器:有
39、两种方法构造补偿器:第一种是将传感器的零极点全部消去,换上合适的极点。第一种是将传感器的零极点全部消去,换上合适的极点。第二种方法是替换传感器的极点,不动零点。第二种方法是替换传感器的极点,不动零点。上一页下一页返 回39ppt课件)(2()()(2122221222bsbssaasasbsHnnnb 等效系统为等效系统为)2()(222nnndssksH对上式进行变换对上式进行变换322133221)(AsAsAsBsBsBsHb22/abk 1121/)2(bbbAn11222/)2(bbbAnn1223/bbAn)/(12221babBn)/(122122babaBn1223/bbBn根
40、据需要,确定根据需要,确定和和 n,代入上式,即可求出补偿器的模型,代入上式,即可求出补偿器的模型 上一页下一页返 回40ppt课件l替换传感器的极点,不动零点。替换传感器的极点,不动零点。21221202222122)2()()(AsAsBsBsBssaasassHnnnbnA2122nA220/aBn2211/aaBn22nB确定确定和和 n,代入上式,即可求出补偿器的模型,代入上式,即可求出补偿器的模型上一页下一页返 回41ppt课件l两种方法的效果相当。两种方法的效果相当。第一种方法得出的补偿器是三阶非齐次模型;第一种方法得出的补偿器是三阶非齐次模型;第二种是二阶齐次模型,较易实现,更
41、为可靠。第二种是二阶齐次模型,较易实现,更为可靠。l用零极点配置法设计补偿器,要依据传感器的用零极点配置法设计补偿器,要依据传感器的模型,所以,对传感器建模精度有一定要求,模型,所以,对传感器建模精度有一定要求,但是,并不严格。由于人为控制极点,补偿效但是,并不严格。由于人为控制极点,补偿效果非常明显。果非常明显。l对于高阶系统,对于高阶系统,可以采用降阶的方法去近似处理;可以采用降阶的方法去近似处理;可以用低阶补偿器去校正。可以用低阶补偿器去校正。上一页下一页返 回42ppt课件(1)理想的动态响应理想的动态响应(2)设计步骤设计步骤上一页下一页返 回43ppt课件设等效系统为一阶系统设等效
42、系统为一阶系统1)(TsksHd调整时间常数调整时间常数T,使阶跃响应的上升时间满足要求,使阶跃响应的上升时间满足要求,就得到了等效系统的理想动态响应。就得到了等效系统的理想动态响应。K传感器的静态灵敏度。传感器的静态灵敏度。设等效系统为二阶系统设等效系统为二阶系统 2222)(nnndssksH选取不同的选取不同的 n,展宽等效系统的工作频带。,展宽等效系统的工作频带。=0.707上一页下一页返 回44ppt课件l把传感器的阶跃响应作为补偿器的输入,把等效系统把传感器的阶跃响应作为补偿器的输入,把等效系统的理想阶跃响应作为补偿器的输出,用最小二乘辨识的理想阶跃响应作为补偿器的输出,用最小二乘
43、辨识方法建立补偿器的模型。方法建立补偿器的模型。l如果对传感器做阶跃响应法标定不方便,没有传感器如果对传感器做阶跃响应法标定不方便,没有传感器的阶跃响应数据,可以依据其它标定方法的数据,建的阶跃响应数据,可以依据其它标定方法的数据,建立传感器的模型,再计算出传感器的阶跃响应。立传感器的模型,再计算出传感器的阶跃响应。l无论等效系统构造成一阶或二阶,均可用系统辨识方无论等效系统构造成一阶或二阶,均可用系统辨识方法求出动态补偿器的模型。通过比较发现,用二阶等法求出动态补偿器的模型。通过比较发现,用二阶等效系统构造理想动态响应,得出的补偿器,效果更好效系统构造理想动态响应,得出的补偿器,效果更好些。当传感器可做阶跃标定时,无需知道其模型,就些。当传感器可做阶跃标定时,无需知道其模型,就可构造出补偿器模型。可构造出补偿器模型。当传感器为一、二阶系统时,用系统辨识方法设计补偿器,当传感器为一、二阶系统时,用系统辨识方法设计补偿器,效果较佳。效果较佳。当传感器是高阶系统时,可用降阶的方法处理。当传感器是高阶系统时,可用降阶的方法处理。上一页返 回45ppt课件