最新高三数学专题复习资料抛物线(DOC 22页).doc

上传人(卖家):2023DOC 文档编号:5641509 上传时间:2023-04-28 格式:DOC 页数:22 大小:516.50KB
下载 相关 举报
最新高三数学专题复习资料抛物线(DOC 22页).doc_第1页
第1页 / 共22页
最新高三数学专题复习资料抛物线(DOC 22页).doc_第2页
第2页 / 共22页
最新高三数学专题复习资料抛物线(DOC 22页).doc_第3页
第3页 / 共22页
最新高三数学专题复习资料抛物线(DOC 22页).doc_第4页
第4页 / 共22页
最新高三数学专题复习资料抛物线(DOC 22页).doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、第七节抛物线考纲下载1掌握抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率等)2了解圆锥曲线的简单应用了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用3理解数形结合思想1抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上2抛物线的标准方程和几何性质标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y0x0焦点FFFF离心率e1准线方程xxyy范围x0,yRx0,yRy0,xRy0,

2、xR开口方向向右向左向上向下焦半径(其中P(x0,y0)|PF|x0|PF|x0|PF|y0|PF|y01当定点F在定直线l上时,动点的轨迹是什么图形?提示:当定点F在定直线l上时,动点的轨迹是过定点F且与直线l垂直的直线2抛物线y22px(p0)上任意一点M(x0,y0)到焦点F的距离与点M的横坐标x0有何关系?若抛物线方程为x22py(p0),结果如何?提示:由抛物线定义得|MF|x0;若抛物线方程为x22py(p0),则|MF|y0.1设抛物线的顶点在原点,准线方程为x2,则抛物线的方程是()Ay28x By24xCy28x Dy24x解析:选C由抛物线准线方程为x2知p4,且开口向右,

3、故抛物线方程为y28x.2(A.安徽高考)抛物线yx2 的准线方程是()Ay1 By2 Cx1 Dx2解析:选A抛物线yx2的标准方程为x24y,所以其准线方程为y1.3抛物线y2x2的焦点坐标为()A. B(1,0) C. D.解析:选C将抛物线y2x2化成标准方程为x2y,所以2p,而抛物线x2y的焦点在y轴的非负半轴上,所以焦点坐标为.4抛物线的焦点为椭圆1的左焦点,顶点为椭圆中心,则抛物线方程为_解析:由c2945,得F(,0),则抛物线方程为y24x.答案:y24x5设抛物线y22px(p0)的焦点为F,点A(0,2)若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为_解析:F

4、,则B,2p1,解得p.B,因此B到该抛物线的准线的距离为.答案: 例1设P是抛物线y24x上的一个动点(1)求点P到点A(1,1)的距离与点P到直线x1的距离之和的最小值;(2)若B(3,2),求|PB|PF|的最小值自主解答(1)如图,易知抛物线的焦点为F(1,0),准线是x1.由抛物线的定义知:点P到直线x1的距离等于点P到焦点F的距离于是,问题转化为:在曲线上求一点P,使点P到点A(1,1)的距离与点P到F(1,0)的距离之和最小显然,连接AF交曲线于点P,则所求的最小值为|AF|,即为.(2)如图,过点B作BQ垂直准线于Q,交抛物线于点P1,则|P1Q|P1F|.则有|PB|PF|P

5、1B|P1Q|BQ|4.即|PB|PF|的最小值为4.若将本例(2)中的点B坐标改为(3,4),求|PB|PF|的最小值解:由题意可知点(3,4)在抛物线的外部|PB|PF|的最小值即为B,F两点间的距离|PB|PF|BF|2.即|PB|PF|的最小值为2. 方法规律抛物线定义中的“转化”法利用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化“看到准线想到焦点,看到焦点想到准线”,这是解决抛物线焦点弦有关问题的有效途径1(A.绍兴模拟)已知动圆过定点F,且与直线x相切,其中p0,则动圆圆心的轨迹E的方程为_解析:依题意得,圆心到定点F的距离与到直线x的距离相

6、等,再依抛物线的定义知,动圆圆心的轨迹E为抛物线,其方程为y22px.答案:y22px2过抛物线y24x的焦点F的直线交该抛物线于A,B两点,若|AF|3,则|BF|_.解析:因为抛物线y24x的焦点F(1,0)显然,当AB垂直于x轴时,|AF|3,所以AB的斜率k存在,设AB的方程为yk(x1),与抛物线y24x联立,消去y得k2x22k2x4xk20,即k2x2(2k24)xk20,设A(x1,y1),B(x2,y2)由根与系数的关系得x1x22.又|AF|3x1x11,所以x12,代入k2x22k2x4xk20,得k28,所以x1x2,x2,故|BF|x211.答案: 例2(1)抛物线y

7、24x的焦点到双曲线x21的渐近线的距离是()A. B. C1 D.(2)抛物线x22py(p0)的焦点为F,其准线与双曲线1相交于A,B两点,若ABF为等边三角形,则p_.自主解答(1)由抛物线y24x,有2p4,p2.其焦点坐标为(1,0),双曲线x21的渐近线方程为yx.不妨取其中一条xy0.由点到直线的距离公式有d.(2)在等边三角形ABF中,AB边上的高为p,p,所以B.又因为点B在双曲线上,故1,解得p6.答案(1)B(2)61已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0)若点M到该抛物线焦点的距离为3,则|OM|()A2 B2 C4 D2解析:选B依题意,

8、设抛物线方程是y22px(p0),则有23,得p2,故抛物线方程是y24x,点M的坐标是(2,2),|OM|2.2已知双曲线C1:1(a0,b0)的离心率为2.若抛物线C2:x22py(p0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()Ax2y Bx2yCx28y Dx216y解析:选D双曲线的渐近线方程为yx,由于 2,所以,所以双曲线的渐近线方程为yx.抛物线的焦点坐标为,所以2,则p8,所以抛物线方程为x216y.1直线与抛物线的位置关系,是高考命题的热点,多以解答题的形式出现,试题难度较大,多为中、高档题2直线与抛物线的位置关系有以下几个命题角度:(1)已知抛物线方程

9、及其他条件,求直线方程;(2)证明直线过定点;(3)求线段长度或线段之积(和)的最值;(4)求定值例3(A.浙江高考)已知 ABP的三个顶点在抛物线C:x24y 上,F为抛物线C的焦点,点M为AB的中点,.(1)若|PF| 3,求点M的坐标;(2)求ABP 面积的最大值自主解答(1)由题意知焦点F(0,1),准线方程为y1.设P(x0,y0),由抛物线定义知|PF|y01,得到y02,所以P(2,2)或P(2,2)由,分别得M或M.(2)设直线AB的方程为ykxm,点A(x1,y1),B(x2,y2),P(x0,y0)由得x24kx4m0.于是16k216m0,x1x24k,x1x24m,所以

10、AB中点M的坐标为(2k,2k2m)由,得(x0,1y0)3(2k,2k2m1),所以由x4y0得k2m.由0,k20,得f.所以,当m时,f(m)取到最大值,此时k.所以,ABP面积的最大值为.直线与抛物线的位置关系的常见类型及解题策略(1)求直线方程先寻找确定直线的两个条件,若缺少一个可设出此量,利用题设条件寻找关于该量的方程,解方程即可(2)证明直线过定点可依题设条件寻找该直线的方程,可依据方程中的参数及其他条件确定该直线过那个定点(3)求线段长度和线段之积(和)的最值可依据直线与抛物线相交,依据弦长公式,求出弦长或弦长关于某个量的函数,然后利用基本不等式或利用函数的知识,求函数的最值;

11、也可利用抛物线的定义转化为两点间的距离或点到直线的距离(4)求定值可借助于已知条件,将直线与抛物线联立,寻找待定式子的表达式,化简即可得到(A.宁波模拟)已知过点A(4,0)的动直线l与抛物线G:x22py(p0)相交于B,C两点当直线l的斜率是时,.(1)求抛物线G的方程;(2)设线段BC的中垂线在y轴上的截距为b,求b的取值范围解:(1)设B(x1,y1),C(x2,y2),当直线l的斜率是时,l的方程为y(x4),即x2y4,联立消去x,得2y2(8p)y80,y1y2,y1y24,由已知,y24y1,由韦达定理及p0可得y11,y24,p2,抛物线G的方程为x24y.(2)由题意知直线

12、l的斜率存在,且不为0,设l:yk(x4),BC中点坐标为(x0,y0),由得x24kx16k0,由0得k0,x02k,y0k(x04)2k24k,BC中垂线方程为y2k24k(x2k),b2(k1)2,b2.故b的取值范围为(2,)课堂归纳通法领悟4个结论直线与抛物线相交的四个结论已知抛物线y22px(p0),过其焦点的直线交抛物线于A,B两点,设A(x1,y1),B(x2,y2),则有以下结论:(1)|AB|x1x2p或|AB|(为AB所在直线的倾斜角);(2)x1x2;(3)y1y2p2;(4)过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p. 3个注意点抛物线问题的

13、三个注意点(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程(2)注意应用抛物线定义中距离相等的转化来解决问题(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点 前沿热点(十二)与抛物线有关的交汇问题1抛物线是一种重要的圆锥曲线,在高考中,经常以抛物线为载体与直线、圆综合考查,主要考查抛物线的方程及几何性质,直线与抛物线的综合应用,点到直线的距离等2直线与抛物线的综合问题,经常是将直线方程与抛物线方程联立,消去x(或y),利用方

14、程的根与系数的关系求解,但一定要注意直线与抛物线相交的条件典例(B.湖南高考)过抛物线E:x22py(p0)的焦点F作斜率分别为k1,k2的两条不同直线l1,l2,且k1k22,l1与E相交于点A,B,l2与E相交于点C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(1)若k10,k20,证明:0,k20,k1k2,所以0k1k221.故0,所以点M到直线l的距离d.故当k1时,d取最小值.由题设,解得p8.故所求的抛物线E的方程为x216y.名师点评解答本题的关键有以下两点:(1)充分利用k10,k20,k1k2时,k1k20,即d.(A.湖州模拟)已知抛物线C

15、:y22px的焦点为F,抛物线C与直线l1:yx的一个交点的横坐标为8.(1)求抛物线C的方程;(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A,B,若线段AB的中点为P,且|OP|PB|,求FAB的面积解:(1)由题意知交点坐标为(8,8),822p8,2p8,所以抛物线方程为y28x.(2)l1:yx,又直线l2与l1垂直,所以可设l2:xym,A(x1,y1),B(x2,y2),且直线l2与x轴交点为M.由得y28y8m0,6432m0,m2.由韦达定理,y1y28,y1y28m,x1x2m2.由题意可知OAOB,即x1x2y1y2m28m0,m8或m0(舍),l2:xy8

16、,M(8,0),故SFABSFMBSFMA|FM|y1y2|324.全盘巩固1抛物线x2(2a1)y的准线方程是y1,则实数a()A. B. C D解析:选D把抛物线方程化为x22y,则pa,故抛物线的准线方程是y,则1,解得a.2(A.辽宁高考) 已知点A(2,3) 在抛物线C:y22px 的准线上,记C的焦点为F,则直线AF的斜率为()A B1C D解析:选C因为点A在抛物线的准线上,所以2,所以该抛物线的焦点F(2,0),所以kAF,选C.3(B.江西高考)已知点A(2,0),抛物线C:x24y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|MN|()A2 B12

17、 C1 D13解析:选CFA:yx1,与x24y联立,得xM1,FA:yx1,与y1联立,得N(4,1),由三角形相似知.4设F为抛物线y24x的焦点,A,B,C为该抛物线上三点,若则 ()A9 B6 C4 D3解析:选B设A(x1,y1),B(x2,y2),C(x3,y3),又(x11)(x21)(x31)0,即x1x2x33,x1x2x3p6.5已知点M(1,0),直线l:x1,点B是l上的动点,过点B垂直于y轴的直线与线段BM的垂直平分线交于点P,则点P的轨迹是()A抛物线 B椭圆C双曲线的一支 D直线解析:选A由点P在BM的垂直平分线上,故|PB|PM|.又PBl,因而点P到直线l的距

18、离等于点P到点M的距离,所以点P的轨迹是抛物线6(A.台州模拟)O为坐标原点,F为抛物线C:y24x的焦点,P为C上一点,若|PF|4,则POF的面积为()A2 B2 C2 D4解析:选C设P(x0,y0),根据抛物线定义得|PF|x0,所以x03,代入抛物线方程求得y224,解得|y|2,所以POF的面积等于|OF|y|22.7(B.北京高考)若抛物线y22px的焦点坐标为(1,0),则p_,准线方程为_解析:抛物线y22px的焦点坐标为(1,0),1,解得p2,准线方程为x1.答案:2x18(A.丽水模拟)设Q为圆C:x2y26x8y210上任意一点,抛物线y28x的准线为l.若抛物线上任

19、意一点P到直线l的距离为m,则m|PQ|的最小值为_解析:如图由抛物线定义可得,点P到准线的距离等于其到焦点F的距离,故问题转化为点P到焦点的距离与到圆上点的距离之和的最小值,由圆的知识可知当且仅当点P为圆心C和焦点F的连线与抛物线的交点,Q取CF的连线与圆的交点时,距离之和取得最小值,即m|PQ|CF|r22.答案:2.9抛物线yx2上的点到直线4x3y80距离的最小值是_解析:如图,设与直线4x3y80平行且与抛物线yx2相切的直线为4x3yb0,切线方程与抛物线方程联立得消去y整理得3x24xb0,则1612b0,解得b,所以切线方程为4x3y0,抛物线yx2上的点到直线4x3y80距离

20、的最小值是这两条平行线间的距离d.答案:10已知以向量v为方向向量的直线l过点,抛物线C:y22px(p0)的顶点关于直线l的对称点在该抛物线的准线上(1)求抛物线C的方程;(2)设A,B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若p20(O为原点,A,B异于原点),试求点N的轨迹方程解:(1)由题意可得直线l的方程为yx,过原点垂直于l的直线方程为y2x.解得x.抛物线的顶点关于直线l的对称点在该抛物线的准线上,2,p2.抛物线C的方程为y24x.(2)设A(x1,y1),B(x2,y2),N(x0,y0),由题意知y0y1.由p20,得x1x2y1y240,

21、又y4x1,y4x2,解得y1y28,直线ON:yx,即y0x0.由及y0y1得点N的轨迹方程为x2(y0)11已知定点A(1,0)和直线x1上的两个动点E,F,且 (其中O为坐标原点)(1)求动点P的轨迹C的方程;(2)过点B(0,2)的直线l与(1)中的轨迹C相交于两个不同的点M,N,若,求直线l的斜率的取值范围解:(1)设P(x,y),E(1,yE),F(1,yF), (2,yE)(2,yF)yEyF40,yEyF4,yyE0且x(yF)y0,yEy,yF,代入得y24x(x0),动点P的轨迹C的方程为y24x(x0)(2)设l:y2kx(易知k存在,且k0),联立消去x,得ky24y8

22、0,4232k0,即k.令M(x1,y1),N(x2,y2),则y1y2,y1y2,(x11,y1)(x21,y2)x1x2(x1x2)1y1y21y1y22y1y2110,12k0)(2)弦长|TS|为定值理由如下:取曲线C上点M(x0,y0),M到y轴的距离为d|x0|x0,圆的半径r|MA|,则|TS|22,因为点M在曲线C上,所以x0,所以|TS|22,是定值冲击名校已知直线y2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OPOQ(O为坐标原点),记点P的轨迹为C.(1)求曲线C的方程;(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直

23、线l2的方程解:(1)设点P的坐标为(x,y),则点Q的坐标为(x,2)OPOQ,当x0时,P,O,Q三点共线,不符合题意,故x0.当x0时,得kOPkOQ1,即1,化简得x22y,曲线C的方程为x22y(x0)(2)直线l2与曲线C相切,直线l2的斜率存在设直线l2的方程为ykxb,由得x22kx2b0.直线l2与曲线C相切,4k28b0,即b.点(0,2)到直线l2的距离d2.当且仅当,即k时,等号成立此时b1.直线l2的方程为xy10或xy10.高频滚动1已知点F1(,0),F2(,0),动点P满足|PF2|PF1|2,当点P的纵坐标是时,点P到坐标原点的距离是()A. B. C. D2解析:选A由已知可得c,a1,b1.双曲线方程为x2y21(x1)将y代入,可得点P的横坐标为x.点P到原点的距离为 .2已知双曲线1的左,右焦点分别为F1,F2,点M在双曲线上且MF1x轴,则F1到直线F2M的距离为_解析:由题意知F1(3,0),设M(3,y0),代入双曲线方程求得|y0|,即|MF1|.又|F1F2|6,利用直角三角形性质及数形结合得F1到直线F2M的距离为d.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 考试试卷
版权提示 | 免责声明

1,本文(最新高三数学专题复习资料抛物线(DOC 22页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|