新人教版八年级上册数学[全等三角形全章复习与巩固(提高)知识点整理及重点题型梳理](DOC 13页).doc

上传人(卖家):2023DOC 文档编号:5644449 上传时间:2023-04-28 格式:DOC 页数:14 大小:353KB
下载 相关 举报
新人教版八年级上册数学[全等三角形全章复习与巩固(提高)知识点整理及重点题型梳理](DOC 13页).doc_第1页
第1页 / 共14页
新人教版八年级上册数学[全等三角形全章复习与巩固(提高)知识点整理及重点题型梳理](DOC 13页).doc_第2页
第2页 / 共14页
新人教版八年级上册数学[全等三角形全章复习与巩固(提高)知识点整理及重点题型梳理](DOC 13页).doc_第3页
第3页 / 共14页
新人教版八年级上册数学[全等三角形全章复习与巩固(提高)知识点整理及重点题型梳理](DOC 13页).doc_第4页
第4页 / 共14页
新人教版八年级上册数学[全等三角形全章复习与巩固(提高)知识点整理及重点题型梳理](DOC 13页).doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、精品文档 用心整理新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料全等三角形全章复习与巩固(提高)【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【388614 全等三角形单元复习,知识要点】一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定

2、理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等要点一、全等三角形的判定与性质要点二、全等三角形的证明思路要点三、角平分线的性质1.角的平分线的性质定理 角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理 角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线 三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线 在角两边截取相等的线段,构造全等三角形; 在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三

3、角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1 证明线段相等的方法: (1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2 证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3 证明两条线段的位置关系(平行、垂直)的方法:可通过证

4、明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4 辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件. (3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助

5、线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、巧引辅助线构造全等三角形(1)倍长中线法1、已知,如图,ABC中,D是BC中点,DEDF,试判断BECF与EF的大小关系,并证明你的结论.【思路点拨】因为D是BC的中点,按倍长中线法,倍长过中点的线段DF,使DGDF,证明EDGEDF,FDCGDB,这样就把BE、CF与EF线段转化到了BEG中,利用两边之和大于第三边可证.【答案与解析】BECFEF;证明:延长FD到G,使DGDF,连接BG、EGD是BC中点BDCD又DEDF在EDG和EDF中EDGEDF(SAS)EGEF在FDC与GDB中FDCGDB(SAS

6、)CFBGBGBEEGBECFEF【总结升华】有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段).举一反三:【变式】已知:如图所示,CE、CB分别是ABC与ADC的中线,且ACBABC求证:CD2CE【答案】证明: 延长CE至F使EFCE,连接BF EC为中线, AEBE在AEC与BEF中, AECBEF(SAS) ACBF,AFBE(全等三角形对应边、角相等)又 ACBABC,DBCACBA,FBCABCA ACAB,DBCFBC ABBF又 BC为ADC的中线, ABBD即BFBD在FCB与DCB中, FCBDCB(SAS) CFCD即CD2CE(2)作以角平分线为对称轴的翻折变换

7、构造全等三角形2、(2016海淀区校级模拟)如图,已知BAC=90,ADBC于点D,1=2,EFBC交AC于点F试说明AE=CF【思路点拨】作EHAB于H,作FGBC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明AEHCFG即可【答案与解析】解:作EHAB于H,作FGBC于G,1=2,ADBC,EH=ED(角平分线的性质)EFBC,ADBC,FGBC,四边形EFGD是矩形,ED=FG,EH=FG,BAD+CAD=90,C+CAD=90,BAD=C,又AHE=FGC=90,AEHCFG(AAS)AE=CF【总结升华】本题考查了角平分线的性质;由角平分线构造全等,综

8、合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点举一反三:【变式】如图,AD是的角平分线,H,G分别在AC,AB上,且HDBD.(1)求证:B与AHD互补;(2)若B2DGA180,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.【答案】证明:(1)在AB上取一点M, 使得AMAH, 连接DM. CADBAD, ADAD, AHDAMD. HDMD, AHDAMD. HDDB, DB MD. DMBB. AMDDMB 180, AHDB180. 即 B与AHD互补. (2)由(1)AHDAMD, HDMD, AHDB180. B2DGA 180, AHD2DGA.

9、 AMD2DGM. AMDDGMGDM. 2DGMDGMGDM. DGMGDM. MDMG. HD MG. AG AMMG, AG AHHD. (3).利用截长(或补短)法作构造全等三角形3、(2015新宾县模拟)如图,ABC中,AB=AC,点P是三角形右外一点,且APB=ABC(1)如图1,若BAC=60,点P恰巧在ABC的平分线上,PA=2,求PB的长;(2)如图2,若BAC=60,探究PA,PB,PC的数量关系,并证明;(3)如图3,若BAC=120,请直接写出PA,PB,PC的数量关系【思路点拨】(1)AB=AC,BAC=60,证得ABC是等边三角形,APB=ABC,得到APB=60,

10、又点P恰巧在ABC的平分线上,得到ABP=30,得到直角三角形,利用直角三角形的性质解出结果(2)在BP上截取PD,使PD=PA,连结AD,得到ADP是等边三角形,再通过三角形全等证得结论(3)以A为圆心,以AP的长为半径画弧交BP于D,连接AD,过点A作AFBP交BP于F,得到等腰三角形,然后通过三角形全等证得结论【答案与解析】解:(1)AB=AC,BAC=60,ABC是等边三角形,APB=ABC,APB=60,又点P恰巧在ABC的平分线上,ABP=30,PAB=90,BP=2AP,AP=2,BP=4;(2)结论:PA+PC=PB证明:如图1,在BP上截取PD,使PD=PA,连结AD,APB

11、=60,ADP是等边三角形,DAP=60,1=2,PA=PD,在ABD与ACP中,ABDACP,PC=BD,PA+PC=PB;(3)结论:PA+PC=PB证明:如图2,以A为圆心,以AP的长为半径画弧交BP于D,连接AD,过点A作AFBP交BP于F,AP=AD,BAC=120,ABC=30,APB=30,DAP=120,1=2,在ABD与ACP中,ABDACP,BD=PC,AFPD,PF=AP,PD=AP,PA+PC=PB【总结升华】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,直角三角形的性质,等边三角形的判定和性质,截长补短作辅助线构造全等三角形是解题的关键 举一反三:【变式】

12、如图,AD是ABC的角平分线,ABAC,求证:ABACBDDC【答案】证明:在AB上截取AEAC,连结DEAD是ABC的角平分线,BADCAD在AED与ACD中AEDADC(SAS)DEDC在BED中,BEBDDC即ABAEBDDCABACBDDC(4).在角的平分线上取一点向角的两边作垂线段4、(2016海淀区校级模拟)如图,已知BAC=90,ADBC于点D,1=2,EFBC交AC于点F试说明AE=CF【思路点拨】作EHAB于H,作FGBC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明AEHCFG即可【答案与解析】解:作EHAB于H,作FGBC于G,1=2,A

13、DBC,EH=ED(角平分线的性质)EFBC,ADBC,FGBC,四边形EFGD是矩形,ED=FG,EH=FG,BAD+CAD=90,C+CAD=90,BAD=C,又AHE=FGC=90,AEHCFG(AAS)AE=CF【总结升华】本题考查了角平分线的性质;已知角平分线,构造全等三角形,综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点5、如图所示,在ABC中,AC=BC,ACB=90,D是AC上一点,且AE垂直BD的延长线于E, ,求证:BD是ABC的平分线【答案与解析】证明:延长AE和BC,交于点F,ACBC,BEAE,ADE=BDC(对顶角相等),EAD+ADE=CBD+

14、BDC即EAD=CBD在RtACF和RtBCD中所以RtACFRtBCD(ASA)则AF=BD(全等三角形对应边相等)AE=BD,AE=AF,即AE=EF在RtBEA和RtBEF中,则RtBEARtBEF(SAS)所以ABE=FBE(全等三角形对应角相等),即BD是ABC的平分线【总结升华】如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决平时练习中多积累一些辅助线的添加方法.类型二、全等三角形动态型问题【379111 直角三角形全等的判定,巩固练习5】6、在ABC中,ACB90,ACBC,直线经过顶点C,过A,B两点分别作的垂线AE,BF,垂足分别

15、为E,F.(1)如图1当直线不与底边AB相交时,求证:EFAEBF.(2)将直线绕点C顺时针旋转,使与底边AB相交于点D,请你探究直线在如下位置时,EF、AE、BF之间的关系,ADBD;ADBD;ADBD.【答案与解析】证明:(1)AE,BF,AECCFB90,1290ACB90,239013。在ACE和CBF中,ACECBF(AAS)AECF,CEBFEFCECF,EFAEBF。(2)EFAEBF,理由如下:AE,BF,AECCFB90,1290ACB90,2390,13。在ACE和CBF中ACECBF(AAS)AECF,CEBFEFCFCE,EFAEBF。EFAEBFEFBFAE证明同.【

16、总结升华】解决动态几何问题时要善于抓住以下几点:(1) 变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;(2) 图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段之间、角之间的位置与数量关系是否还存在是解题的关键;(3) 几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程,其结论有时变化,有时不发生变化.举一反三:【变式】(2015临沂模拟)【问题情境】如图,在正方形ABCD中,点E是线段BG上的动点,AEEF,EF交正方形外角DCG的平分线CF于点F【探究展示】(1)如图1,若点E是BC的中点,证明:BAE+EFC=DCF(2)如图2

17、,若点E是BC的上的任意一点(B、C除外),BAE+EFC=DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由【拓展延伸】(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF【答案】(1)证明:取AB的中点M,连结EM,如图1:M是AB的中点,E是BC的中点,在正方形ABCD中,AM=EC,CF是DCG的平分线,BCF=135,AME=ECF=135,MAE=CEF=45,在AME与ECF中,AMEECF(SAS),BAE+EFC=FCG=DCF;(2)证明:取AB上的任意一点使得AM=EC,连结EM,如图2:AEEF,ABBC,BAE+BEA=90,BEA+CEF=90,MAE=CEF,AM=EC,在正方形ABCD中,BM=BE,AME=ECF=135,在AME与ECF中,AMEECF(SAS),BAE+EFC=FCG=DCF;(3)证明:取AB延长线上的一点M使得AM=CE,如图3:AM=CE,ABBC,AME=45,ECF=AME=45,ADBE,DAE=BEA,MAAD,AEEF,MAE=CEF,在AME与ECF中,AMEECF(SAS),AE=EF资料来源于网络 仅供免费交流使用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 人教版(2024) > 八年级上册
版权提示 | 免责声明

1,本文(新人教版八年级上册数学[全等三角形全章复习与巩固(提高)知识点整理及重点题型梳理](DOC 13页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|