1、. . . . 初高中数学衔接知识点专题(一) 专题一 数与式的运算【要点回顾】1绝对值1绝对值的代数意义: 即 2绝对值的几何意义: 的距离 3两个数的差的绝对值的几何意义:表示 的距离4两个绝对值不等式:;2乘法公式我们在初中已经学习过了下列一些乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 我们还可以通过证明得到下列一些乘法公式:公式1公式2(立方和公式)公式3 (立方差公式)说明:上述公式均称为“乘法公式”3根式1式子叫做二次根式,其性质如下:(1) ;(2) ;(3) ; (4) 2平方根与算术平方根的概念: 叫做的平方根,记作,其中叫做的算术平方根3立方根的概
2、念: 叫做的立方根,记为4分式1分式的意义 形如的式子,若B中含有字母,且,则称为分式当M0时,分式具有下列性质: (1) ; (2) 2繁分式 当分式的分子、分母中至少有一个是分式时,就叫做繁分式,如,说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质3分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程【例题选讲】例1 解下列不等式:(1) (2)4例2 计算: (1) (2)(3) (4)例3 已知
3、,求的值例4 已知,求的值例5 计算(没有特殊说明,本节中出现的字母均为正数):(1) (2) (3) (4) 例6 设,求的值例7 化简:(1) (2)(1)解法一:原式= 解法二:原式=(2)解:原式=说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式 【巩固练习】1 解不等式 2 设,求代数式的值3 当,求的值4 设,求的值5 计算6化简或计算:(1) (2) (3) (4) 各专题参考答案 专题一数与式的运算参考答案例1 (1)解法1:由,得;若,不等式可变为,即; 若,不等式可变为,即,解得:综上
4、所述,原不等式的解为解法2: 表示x轴上坐标为x的点到坐标为2的点之间的距离,所以不等式的几何意义即为x轴上坐标为x的点到坐标为2的点之间的距离小于1,观察数轴可知坐标为x的点在坐标为3的点的左侧,在坐标为1的点的右侧所以原不等式的解为解法3:,所以原不等式的解为(2)解法一:由,得;由,得;若,不等式可变为,即4,解得x0,又x1,x0;若,不等式可变为,即14,不存在满足条件的x;若,不等式可变为,即4, 解得x4又x3,x4综上所述,原不等式的解为x0,或x4解法二:如图,表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|x1|;|x3|表示x轴上点P到坐标为2的点B
5、之间的距离|PB|,即|PB|x3|所以,不等式4的几何意义即为|PA|PB|4由|AB|2,可知点P 在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧所以原不等式的解为x0,或x4例2(1)解:原式= 说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列(2)原式=(3)原式=(4)原式=例3解: 原式=例4解:原式= ,把代入得原式=例5解:(1)原式= (2)原式=说明:注意性质的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论(3)原式=(4) 原式=例6解:原式=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量【巩固练习】 1 2 3或4 5 6. . . w