线性代数知识点1至5章课件.ppt

上传人(卖家):ziliao2023 文档编号:5671926 上传时间:2023-05-01 格式:PPT 页数:112 大小:886KB
下载 相关 举报
线性代数知识点1至5章课件.ppt_第1页
第1页 / 共112页
线性代数知识点1至5章课件.ppt_第2页
第2页 / 共112页
线性代数知识点1至5章课件.ppt_第3页
第3页 / 共112页
线性代数知识点1至5章课件.ppt_第4页
第4页 / 共112页
线性代数知识点1至5章课件.ppt_第5页
第5页 / 共112页
点击查看更多>>
资源描述

1、把把 个不同的元素排成一列,叫做这个不同的元素排成一列,叫做这 个元个元素的素的全排列全排列(或(或排列排列)nn个不同的元素的所有排列的种数用个不同的元素的所有排列的种数用 表示,表示,且且 nnP!nPn 全排列逆序数为奇数的排列称为逆序数为奇数的排列称为奇排列奇排列,逆序数为,逆序数为偶数的排列称为偶数的排列称为偶排列偶排列在一个排列在一个排列 中,若数中,若数 ,则称这两个数组成一个则称这两个数组成一个逆序逆序 nstiiiii21stii 一个排列中所有逆序的总数称为此排列的一个排列中所有逆序的总数称为此排列的逆逆序数序数逆序数分别计算出排列中每个元素前面比它大的数分别计算出排列中每

2、个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,码个数之和,即算出排列中每个元素的逆序数,每个元素的逆序数之总和即为所求排列的逆序数每个元素的逆序数之总和即为所求排列的逆序数方法方法2 2方法方法1 1分别计算出排在分别计算出排在 前面比它大的前面比它大的数码之和,即分别算出数码之和,即分别算出 这这 个元素个元素的逆序数,这的逆序数,这 个元素的逆序数之总和即为所求个元素的逆序数之总和即为所求排列的逆序数排列的逆序数n,n,121 n,n,121 nn计算排列逆序数的方法定义定义在排列中,将任意两个元素对调,其余元在排列中,将任意两个元素对调,其余元素不动,称为一次对换将相邻两

3、个元素对调,素不动,称为一次对换将相邻两个元素对调,叫做相邻对换叫做相邻对换定理定理一个排列中的任意两个元素对换,排列改一个排列中的任意两个元素对换,排列改变奇偶性变奇偶性推论推论奇排列调成标准排列的对换次数为奇数,奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数偶排列调成标准排列的对换次数为偶数对换 npppppptnnnnnnnnaaaaaaaaaaaaD2121222211121121211 n阶行列式的定义.,2,1;,2,12121列取和列取和的所有排的所有排表示对表示对个排列的逆序数个排列的逆序数为这为这的一个排列的一个排列为自然数为自然数其中其中ntnppp

4、pppnn.,)1(21212121的逆序数的逆序数为行标排列为行标排列其中其中亦可定义为亦可定义为阶行列式阶行列式ppptaaaDDnnnpppppptnn .,)()4.,)()3.),()2.DD,1)T乘此行列式乘此行列式等于用数等于用数一数一数中所有的元素都乘以同中所有的元素都乘以同列列行列式的某一行行列式的某一行等于零等于零则此行列式则此行列式完全相同完全相同列列如果行列式有两行如果行列式有两行行列式变号行列式变号列列互换行列式的两行互换行列式的两行即即式相等式相等行列式与它的转置行列行列式与它的转置行列kk n阶行列式的性质.,)(,)()8.,)()7.,)()6.)()5行列

5、式的值不变行列式的值不变对应的元素上去对应的元素上去行行后加到另一列后加到另一列然然的各元素乘以同一数的各元素乘以同一数行行把行列式的某一列把行列式的某一列式之和式之和此行列式等于两个行列此行列式等于两个行列则则的元素都是两数之和的元素都是两数之和行行若行列式的某一列若行列式的某一列式为零式为零则此行列则此行列元素成比例元素成比例列列行列式中如果有两行行列式中如果有两行提到行列式符号的外面提到行列式符号的外面以以的所有元素的公因子可的所有元素的公因子可列列行列式中某一行行列式中某一行)余子式与代数余子式)余子式与代数余子式.,)1(1 的代数余子式的代数余子式叫做元素叫做元素;记;记的余子式,

6、记作的余子式,记作阶行列式叫做元素阶行列式叫做元素列划去后,留下来的列划去后,留下来的行和第行和第所在的第所在的第阶行列式中,把元素阶行列式中,把元素在在aAMAManjianijijijjiijijijij 行列式按行(列)展开)关于代数余子式的重要性质)关于代数余子式的重要性质 .,0;,1.,0;,.,0;,11jijijijiDDAajijiDDAaijijjknkikijkinkki当当当当其中其中当当当当或或当当当当 克拉默法则.,2,1.,2,1,0.,122112222212111212111所得到的行列式所得到的行列式,换成常数项换成常数项列列中第中第)是把系数行列式)是把系

7、数行列式(其中其中那么它有唯一解那么它有唯一解的系数行列式的系数行列式如果线性方程组如果线性方程组bbbjDnjDnjDDxDbxaxaxabxaxaxabxaxaxanjjjnnnnnnnnnn 克拉默法则的理论价值克拉默法则的理论价值.,0.,22112222212111212111唯一唯一那么它一定有解,且解那么它一定有解,且解的系数行列式的系数行列式如果线性方程组如果线性方程组 Dbxaxaxabxaxaxabxaxaxannnnnnnnnn.必为零必为零解,则它的系数行列式解,则它的系数行列式解或有两个不同的解或有两个不同的如果上述线性方程组无如果上述线性方程组无定理定理定理定理.,

8、0.0,0,0 221122221211212111那么它没有非零解那么它没有非零解的系数行列式的系数行列式如果齐次线性方程组如果齐次线性方程组 Dxaxaxaxaxaxaxaxaxannnnnnnnn.它的系数行列式必为零它的系数行列式必为零组有非零解,则组有非零解,则如果上述齐次线性方程如果上述齐次线性方程定理定理定理定理.,)1(),2,1;,2,1(212222111211矩阵矩阵简称简称列矩阵列矩阵行行叫做叫做列的数表列的数表行行排成排成个数个数由由nmnmaaaaaaaaaAnmnjmianmmnmmnnij 矩阵的定义.,复复矩矩阵阵元元素素是是复复数数的的矩矩阵阵叫叫做做实实矩

9、矩阵阵元元素素是是实实数数的的矩矩阵阵叫叫做做列列元元素素行行第第的的第第阵阵叫叫做做矩矩的的元元素素个个数数叫叫做做矩矩阵阵其其中中jiAaAnmij.),()()1(AAnmaAaAnmijijnm 也记作也记作矩阵矩阵或或式可简记为式可简记为.)(;2121行行矩矩阵阵叫叫做做只只有有一一行行的的矩矩阵阵叫叫做做列列矩矩阵阵只只有有一一列列的的矩矩阵阵aaaAaaaAnm 方阵列矩阵行矩阵.,)1(阶方阵阶方阵称为称为时时当当式式对对nAnm 两个矩阵的行数相等、列数也相等时,就称两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵它们是同型矩阵.,).,2,1;,2,1(,)()(BA

10、BAnjmibabBaAijijijij 记记作作相相等等与与矩矩阵阵那那么么就就称称矩矩阵阵即即们们的的对对应应元元素素相相等等并并且且它它是是同同型型矩矩阵阵与与如如果果同型矩阵和相等矩阵零矩阵单位矩阵.,O记作记作零矩阵零矩阵元素都是零的矩阵称为元素都是零的矩阵称为.,1 Enn简记作简记作阶单位阵阶单位阵叫做叫做阶方阵阶方阵其余元素都是零的其余元素都是零的主对角线上的元素都是主对角线上的元素都是.,)(,)(,)(的的和和与与称称为为矩矩阵阵加加法法定定义义为为为为两两个个同同型型矩矩阵阵设设BABAbaBAbBaAijijnmijnmijnm 交换律交换律结合律结合律矩阵相加).(,

11、)(,),(),(BABAOAAAAaAaAijij 并并规规定定从从而而有有负负矩矩阵阵的的称称为为矩矩阵阵记记设设ABBA )()(CBACBA ).(,aAAAAAij 规定为规定为或或的乘积记作的乘积记作与矩阵与矩阵数数运算规律运算规律);()(AA ;)(AAA .)(BABA 数乘矩阵.),2,1;,2,1(,)(,)(,)(12211ABCnjmibabababaccCnmBAbBaAskkjiksjisjijiijijnmijnsijsm 记记作作其其中中矩矩阵阵是是一一个个的的乘乘积积与与规规定定设设矩阵相乘运算规律运算规律);()(BCACAB);(),()()(为数为数其

12、中其中 BABAAB ;)(,)(CABAACBACABCBA .EAAAEnnmnmnmm n阶方阵的幂阶方阵的幂.,111121是正整数是正整数其中其中定义定义阶方阵阶方阵是是设设kAAAAAAAAnAkk .,)(,为正整数为正整数其中其中lkAAAAAklkllklk .)(BAABkkk 一般地一般地方阵的运算方阵的行列式方阵的行列式.det,AAAAn或或记记作作的的行行列列式式阵阵叫叫做做方方的的元元素素所所构构成成的的行行列列式式阶阶方方阵阵由由运算规律运算规律.;,BAABAAnBAn 则则阶方阵阶方阵为为为数为数设设转置矩阵转置矩阵.,AAAT记记作作的的转转置置矩矩阵阵叫

13、叫做做阵阵到到一一个个新新矩矩的的行行换换成成同同序序数数的的列列得得把把矩矩阵阵.)(;)(;)(;)(ABABAABABAAATTTTTTTTTT 一些特殊的矩阵对称矩阵对称矩阵.,为对称矩阵为对称矩阵则称则称如果如果阶方阵阶方阵为为设设AAAnAT 反对称矩阵反对称矩阵.,矩阵矩阵为反对称为反对称则称则称如果如果阶方阵阶方阵为为设设AAAnAT 幂等矩阵幂等矩阵.,2为幂等矩阵为幂等矩阵则称则称如果如果阶方阵阶方阵为为设设AAAnA 正交矩阵正交矩阵.,正交矩阵正交矩阵为为则称则称如果如果阶方阵阶方阵为为设设AEAAAAnATT 对角矩阵对角矩阵.,为对角矩阵为对角矩阵则称则称素全为零素

14、全为零其余元其余元如果除了主对角线以外如果除了主对角线以外阶方阵阶方阵为为设设AnA对合矩阵对合矩阵.,2为对合矩阵为对合矩阵则称则称如果如果阶方阵阶方阵为为设设AEAnA 上三角矩阵上三角矩阵主对角线以下的元素全为零的方阵称为上三主对角线以下的元素全为零的方阵称为上三角矩阵角矩阵下三角矩阵下三角矩阵主对角线以上的元素全为零的方阵称为下三主对角线以上的元素全为零的方阵称为下三角矩阵角矩阵伴随矩阵伴随矩阵.212221212111的伴随矩阵的伴随矩阵叫做方阵叫做方阵方阵方阵所构成的所构成的的各元素的代数余子式的各元素的代数余子式行列式行列式AAAAAAAAAAAAAnnnnnnij .:EAAA

15、AA 伴随矩阵具有重要性质伴随矩阵具有重要性质定义定义.,1AAAA 矩矩阵阵记记作作的的逆逆的的逆逆矩矩阵阵是是唯唯一一的的则则有有逆逆矩矩阵阵若若逆矩阵.),(,的逆矩阵的逆矩阵称为称为且矩阵且矩阵秩的秩的、满、满或非奇异的、非退化的或非奇异的、非退化的是可逆的是可逆的则称矩阵则称矩阵使使如果存在矩阵如果存在矩阵阶方阵阶方阵为为设设ABAEBAABBnA 相关定理及性质相关定理及性质.0 AA可逆的充分必要条件是可逆的充分必要条件是方阵方阵.,1AAAA 则则可逆可逆若矩阵若矩阵.)()();0(1)(;)(111111AAAAAATT .)(,111ABABABBA 且且也可逆也可逆那么

16、那么都可逆都可逆与与若同阶方阵若同阶方阵矩阵的分块,主要目的在于简化运算及便于矩阵的分块,主要目的在于简化运算及便于论证论证分块矩阵的运算规则与普通矩阵的运算规则分块矩阵的运算规则与普通矩阵的运算规则相类似相类似分块矩阵);(),(ccrrjiji记记作作列列对对调调矩矩阵阵的的两两行行);(,)(0 kckrkii 记记作作中中的的所所有有元元素素列列乘乘某某一一行行以以数数).(,)()(ckcrkrkjiji 记记作作对对应应的的元元素素上上去去列列倍倍加加到到另另一一行行所所有有元元素素的的列列把把某某一一行行初等变换的定义换法变换换法变换倍法变换倍法变换消法变换消法变换初等变换 逆变

17、换三种初等变换都是可逆的,且其逆变换是三种初等变换都是可逆的,且其逆变换是同一类型的初等变换同一类型的初等变换)(ccrrjiji)(ccrrjiji)(kckrii )1(1kckrii )(ckcrkrjiji )()(ckcrkrjiji .,BABABA记记作作等等价价与与称称矩矩阵阵就就矩矩阵阵经经有有限限次次初初等等变变换换变变成成如如果果矩矩阵阵反身性反身性传递性传递性对称性对称性;AA;,ABBA则则若若.,CACBBA则则若若矩阵的等价三种初等变换对应着三种初等矩阵三种初等变换对应着三种初等矩阵初等矩阵由单位矩阵经过一次初等变换得到的矩阵称由单位矩阵经过一次初等变换得到的矩阵

18、称为初等矩阵为初等矩阵E).(:,)(),(rrjiAAaAjiEmjiijnmm 行行对对调调行行与与第第的的第第把把施施行行第第一一种种初初等等行行变变换换当当于于对对矩矩阵阵相相左左乘乘阶阶初初等等矩矩阵阵用用()换法变换:对调两行(列),得初等()换法变换:对调两行(列),得初等矩阵矩阵).(:,),(,ccjiAAAjiEnjin列列对对调调列列与与第第第第的的把把施施行行第第一一种种初初等等列列变变换换相相当当于于对对矩矩阵阵右右乘乘矩矩阵阵阶阶初初等等矩矩阵阵用用类类似似地地),(jiE()倍法变换:以数(非零)乘某行()倍法变换:以数(非零)乘某行(列),得初等矩阵列),得初等

19、矩阵);(,)(kriAkAkiEim 行行第第的的乘乘相相当当于于以以数数左左乘乘矩矩阵阵以以).(,)(kciAkAkiEin 列列第第的的乘乘相相当当于于以以数数右右乘乘矩矩阵阵以以k)(kiE()消法变换:以数乘某行(列)加到另()消法变换:以数乘某行(列)加到另一行(列)上去,得初等矩阵一行(列)上去,得初等矩阵);(,)(rkrikjAAkijEjim 行行上上加加到到第第以以行行乘乘的的第第相相当当于于把把左左乘乘矩矩阵阵以以).(,)(ckcjkiAAkijEijn 列列上上加加到到第第以以列列乘乘的的第第相相当当于于把把右右乘乘矩矩阵阵以以k)(kijE经过初等行变换,可把矩

20、阵化为行阶梯形矩经过初等行变换,可把矩阵化为行阶梯形矩阵,其特点是:可画出一条阶梯线,线的下方全阵,其特点是:可画出一条阶梯线,线的下方全为为0 0;每个台阶只有一行,台阶数即是非零行的;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第后面的第一个元素为非零元,也就是非零行的第一个非零元一个非零元例如例如 00000310000111041211行阶梯形矩阵经过初等行变换,行阶梯形矩阵还可以进一经过初等行变换,行阶梯形矩阵还可以进一步化为行最简形矩阵,其特点是:非零行的第一步化为行

21、最简形矩阵,其特点是:非零行的第一个非零元为个非零元为1 1,且这些非零元所在列的其它元素都,且这些非零元所在列的其它元素都为为0 0例如例如 00000310003011040101行最简形矩阵对行阶梯形矩阵再进行初等列变换,可得到对行阶梯形矩阵再进行初等列变换,可得到矩阵的标准形,其特点是:左上角是一个单位矩矩阵的标准形,其特点是:左上角是一个单位矩阵,其余元素都为阵,其余元素都为0 0例如例如 00000310003011040101ccccccccc214433215334 00000001000001000001矩阵的标准形.,),(,数数梯形矩阵中非零行的行梯形矩阵中非零行的行就是

22、行阶就是行阶其中其中三个数完全确定三个数完全确定此标准形由此标准形由化为标准形化为标准形换和列变换换和列变换行变行变总可以经过初等变换总可以经过初等变换矩阵矩阵任何一个任何一个rrnmOOOErFnmnm 所有与所有与A A等价的矩阵组成的一个集合,称为一等价的矩阵组成的一个集合,称为一个等价类,标准形是这个等价类中形状最简单的个等价类,标准形是这个等价类中形状最简单的矩阵矩阵F定义定义.,2阶阶子子式式的的称称为为矩矩阵阵阶阶行行列列式式的的位位置置次次序序而而得得到到的的中中所所处处不不改改变变它它们们在在个个元元素素行行列列交交叉叉处处的的位位于于这这些些列列行行和和任任取取中中矩矩阵阵

23、在在kAkAkkkAnm 矩阵的秩定义定义.0).(,0)(1,0 并并规规定定零零矩矩阵阵的的秩秩等等于于记记作作的的秩秩称称为为矩矩阵阵数数的的最最高高阶阶非非零零子子式式称称为为矩矩阵阵那那么么全全等等于于如如果果存存在在的的话话阶阶子子式式且且所所有有阶阶子子式式的的中中有有一一个个不不等等于于设设在在矩矩阵阵ARArADrDrA;)(,1rARrA 则则阶子式都为零阶子式都为零中所有中所有如果如果);()(ARART 定理定理);()(,BRARBA 则则若若行阶梯形矩阵的秩等于非零行的行数行阶梯形矩阵的秩等于非零行的行数矩阵秩的性质及定理;)(,rARrA 则则阶子式阶子式中有一个

24、非零的中有一个非零的如果如果.)4(;)3(;)()2(;)1(EAEAnARAA的的标标准准形形为为单单位位矩矩阵阵的的最最高高阶阶非非零零子子式式为为 则则阶可逆矩阵阶可逆矩阵为为若若,nA定理定理定理定理.)(0 nARxAnnm 阵阵的的秩秩充充分分必必要要条条件件是是系系数数矩矩有有非非零零解解的的元元齐齐次次线线性性方方程程组组.),(的的秩秩的的秩秩等等于于增增广广矩矩阵阵分分必必要要条条件件是是系系数数矩矩阵阵有有解解的的充充元元非非齐齐次次线线性性方方程程组组bABAbxAnnm 线性方程组有解判别定理齐次线性方程组齐次线性方程组:把系数矩阵化成行最简形:把系数矩阵化成行最简

25、形矩阵,写出通解矩阵,写出通解非齐次线性方程组非齐次线性方程组:把增广矩阵化成行阶梯:把增广矩阵化成行阶梯形矩阵,根据有解判别定理判断是否有解,若有形矩阵,根据有解判别定理判断是否有解,若有解,把增广矩阵进一步化成行最简形矩阵,写出解,把增广矩阵进一步化成行最简形矩阵,写出通解通解10线性方程组的解法定理定理.,;,阶阶初初等等矩矩阵阵相相应应的的的的右右边边乘乘以以相相当当于于在在施施行行一一次次初初等等列列变变换换对对阶阶初初等等矩矩阵阵左左边边乘乘以以相相应应的的相相当当于于在在变变换换施施行行一一次次初初等等行行对对矩矩阵阵是是一一个个设设nAAmAAnmA 11初等矩阵与初等变换的关

26、系定理定理.,2121PPPAPPPAll 使使则则存存在在有有限限个个初初等等矩矩阵阵为为可可逆逆矩矩阵阵设设推论推论.,:BPAQQnPmBAnm 使使得得阶阶可可逆逆矩矩阵阵及及阶阶可可逆逆矩矩阵阵存存在在的的充充分分必必要要条条件件是是矩矩阵阵.,.,21个个分分量量称称为为第第个个数数第第个个数数称称为为该该向向量量的的分分量量这这维维向向量量数数组组称称为为所所组组成成的的个个有有次次序序的的数数iainnaaanin分量全为实数的向量称为分量全为实数的向量称为实向量实向量分量全为复数的向量称为分量全为复数的向量称为复向量复向量向量的定义定义定义 aaaann21,即即称称为为列列

27、向向量量维维向向量量写写成成列列的的形形式式 aaaannT,21 即即称称为为行行向向量量维维向向量量写写成成行行的的形形式式向量的相等向量的相等),2,1(),(),(2121nibababbbbaaaaiiTTnTnT 则则设设零向量零向量分量全为分量全为0 0的向量称为零向量的向量称为零向量),2,1(0niaOaiT ),2,1(,0niaOaiT 中中至至少少有有一一个个不不为为负向量负向量).,(,),(2121aaaaaaaaanTTnT 且且的负向量记作的负向量记作向量向量向量加法向量加法),(:),(),(22112121babababababbbbaaaannTTTTnT

28、nT 的加法为的加法为与与向量向量定义定义设设),(2211babababannTT 向量减法定义为向量减法定义为向量的线性运算数乘向量数乘向量),(,21akakakakaknTT 定定义义为为简简称称数数乘乘向向量量称称为为向向量量的的数数量量乘乘法法的的乘乘积积与与向向量量数数向量加法和数乘向量运算称为向量的向量加法和数乘向量运算称为向量的线性运线性运算算,满足下列八条运算规则:,满足下列八条运算规则:;)1(加法交换律加法交换律);()()2(加法结合律加法结合律;,)3(O有有对任一个向量对任一个向量;)(,)4(O 有有存在负向量存在负向量对任一个向量对任一个向量;1)5(;)()

29、()6(kllk 数乘结合律数乘结合律;)()7(kkk 数乘分配律数乘分配律.)()8(lklk 数乘分配律数乘分配律.,1,为零向量为零向量为数为数维向量维向量为为其中其中Olkn 除了上述八条运算规则,显然还有以下性质:除了上述八条运算规则,显然还有以下性质:);,0(,0 )1(为任意数为任意数为数零为数零其中其中kOkOO ;,0,)2(OkOk 或者或者则或者则或者若若.)3(xx有唯一解有唯一解向量方程向量方程若干个同维数的列(行)向量所组成的集合若干个同维数的列(行)向量所组成的集合叫做向量组叫做向量组定义定义.,:2122112121这这个个线线性性组组合合的的系系数数称称为

30、为的的一一个个线线性性组组合合称称为为向向量量组组向向量量实实数数对对于于任任何何一一组组给给定定向向量量组组kkkAakakakkkkaaaAmmmmm 线性组合定义定义.,:22112121线线性性表表示示由由向向量量组组能能这这时时称称向向量量的的线线性性组组合合是是向向量量组组则则向向量量使使存存在在一一组组实实数数如如果果和和向向量量给给定定向向量量组组AbAbakakakbkkkbaaaAmmmm 线性表示定理定理.),(),(2121的的秩秩的的秩秩等等于于矩矩阵阵件件是是矩矩阵阵线线性性表表示示的的充充分分必必要要条条能能由由向向量量组组向向量量baaaBaaaAAbmm 定义

31、定义.,.,:,:2121两两个个向向量量组组等等价价则则称称这这能能相相互互线线性性表表示示与与向向量量组组若若向向量量组组线线性性表表示示能能由由向向量量组组则则称称向向量量组组线线性性表表示示向向量量组组组组中中的的每每个个向向量量都都能能由由若若及及设设有有两两个个向向量量组组BAABABbbbBaaaAsm定义定义.,0,:22112121否否则则称称它它线线性性无无关关是是线线性性相相关关的的则则称称向向量量组组使使为为零零的的数数如如果果存存在在不不全全给给定定向向量量组组AakakakkkkaaaAmmmm 线性相关定理定理.)(;),(,2121mARmaaaAaaamm 是

32、是必必要要条条件件向向量量组组线线性性无无关关的的充充分分于于向向量量个个数数的的秩秩小小条条件件是是它它所所构构成成的的矩矩阵阵线线性性相相关关的的充充分分必必要要向向量量组组定理定理.,.,:,:)1(12121也也线线性性无无关关则则向向量量组组线线性性无无关关向向量量组组若若反反言言之之也也线线性性相相关关量量组组则则向向线线性性相相关关若若向向量量组组ABaaaaBaaaAmmm 若若向向量量量量添添上上一一个个分分量量后后得得到到向向即即向向量量设设.),2,1(,)2(,111bamjaaabaaajjjrrjjjrjjj .,.,:,:2121也也线线性性相相关关则则向向量量组

33、组线线性性相相关关若若向向量量组组反反言言之之也也线线性性无无关关则则向向量量组组线线性性无无关关组组ABbbbBaaaAmm.,)3(时时一一定定线线性性相相关关向向量量个个数数小小于于当当维维数数维维向向量量组组成成的的向向量量组组个个mnnm.,:,:)4(2121且且表表示示式式是是唯唯一一的的线线性性表表示示能能由由向向量量组组必必则则向向量量线线性性相相关关向向量量组组而而线线性性无无关关设设向向量量组组AbbaaaBaaaAmm定义定义满满足足个个向向量量中中能能选选出出如如果果在在设设有有向向量量组组,21aaarAAr;,:)1(210线线性性无无关关向向量量组组aaaAr,

34、)1(1)2(都都线线性性相相关关个个向向量量的的话话中中有有如如果果个个向向量量中中任任意意向向量量组组 rArA.);(0的秩的秩称为向量组称为向量组量个数量个数最大无关组所含向最大无关组所含向简称最大无关组简称最大无关组无关向量组无关向量组的一个最大线性的一个最大线性是向量组是向量组那么称向量组那么称向量组ArAA向量组的秩等价的向量组的秩相等等价的向量组的秩相等定理定理 矩阵的秩等于它的列向量组的秩,也等于矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩它的行向量组的秩定理定理设向量组设向量组B B能由向量组能由向量组A A线性表示,则向量线性表示,则向量组组B B的秩不大于向量组

35、的秩不大于向量组A A的秩的秩推论推论推论推论).()(),()(,BRCRARCRBACnssmnm 则则设设推论推论(最大无关组的等价定义)(最大无关组的等价定义)设向量组是向量组的部分组,若向量组设向量组是向量组的部分组,若向量组线性无关,且向量组能由向量组线性表示,线性无关,且向量组能由向量组线性表示,则向量组是向量组的一个最大无关组则向量组是向量组的一个最大无关组BABABBA.,;,:,VaRVaVbaVbVaV 则则若若则则若若数数乘乘两两种种运运算算中中可可以以进进行行加加法法及及是是指指在在集集合合所所谓谓封封闭闭向量空间定义定义设设 为为 维向量的集合,如果集合维向量的集合

36、,如果集合 非空,且非空,且集合集合 对于加法及数乘两种运算封闭,那么就称集对于加法及数乘两种运算封闭,那么就称集合合 为向量空间为向量空间VVVVn.,2,1,121 miRaxVaaaimiiim 空空间间为为所所生生成成的的向向量量由由向向量量组组一一般般地地定义定义.,212121的的子子空空间间是是就就称称若若及及设设有有向向量量空空间间VVVVVV.子空间子空间的的都是都是间间维向量所组成的向量空维向量所组成的向量空任何由任何由RVnn子空间定义定义.,)2(;,)1(,1212121维维向向量量空空间间为为并并称称的的维维数数称称为为向向量量空空间间的的一一个个基基就就称称为为向

37、向量量空空间间向向量量组组那那么么线线性性表表示示中中任任一一向向量量都都可可由由线线性性无无关关且且满满足足个个向向量量如如果果为为向向量量空空间间设设rVVrVaaaaaVaaaVaaarVrrrr 基与维数.0.0,OV量量空空间间只只含含一一个个零零向向量量维维向向的的维维数数为为那那么么若若向向量量空空间间没没有有基基.,的的秩秩的的维维数数就就是是向向量量组组组组向向量量组组的的最最大大线线性性无无关关的的基基就就是是则则看看作作向向量量组组若若把把向向量量空空间间VVV向向量量空空间间的的构构造造.,2,1,121 riRaxVVVaaairiiir 可可表表示示为为则则的的一一

38、个个基基是是向向量量空空间间若若向向量量组组的系数矩阵和未知量为的系数矩阵和未知量为记齐次线性方程组记齐次线性方程组)1(,0,0,0221122221211212111 xaxaxaxaxaxaxaxaxanmnmmnnnn向量方程向量方程齐次线性方程组)2(.)1(,21212222111211OAxxxxxaaaaaaaaaAnmnmmnn 式可写成向量方程式可写成向量方程则则解向量解向量.)2(,)1(,)1(,1211111212111的的解解它它也也就就是是向向量量方方程程的的解解向向量量称称为为方方程程组组则则的的解解为为若若 nnnxxxx解向量的性质解向量的性质性质性质性质性

39、质.)2(,)2(,2121的解的解是是也也则则的解的解为为若若 xxx.)2(,)2(11的解的解也是也是则则为实数为实数的解的解为为若若 kxkx 定义定义.)1(,)1(间间的的解解空空称称为为齐齐次次线线性性方方程程组组是是一一个个向向量量空空间间所所以以集集合合对对向向量量的的线线性性运运算算封封闭闭则则集集合合合合集集的的全全体体解解向向量量所所组组成成的的为为方方程程组组设设SSS定理定理.,)(,rnSrARSOxAnnmnm 的维数为的维数为解空间解空间时时当系数矩阵的秩当系数矩阵的秩是一个向量空间是一个向量空间构成的集合构成的集合的全体解所的全体解所元齐次线性方程组元齐次线

40、性方程组定义定义.)1(的的基基础础解解系系的的基基称称为为方方程程组组解解空空间间S)4()3(,22112222212111212111bAxbxaxaxabxaxaxabxaxaxamnmnmmnnnn 可写为向量方程可写为向量方程非齐次线性方程组非齐次线性方程组向量方程向量方程非齐次线性方程组解向量的性质解向量的性质性质性质性质性质.)5(,)4(,2121的的解解组组为为对对应应的的齐齐次次线线性性方方程程则则的的解解为为若若OAxxxx .)4(,)5(,)4(的的解解也也是是方方程程则则解解的的是是方方程程的的解解是是方方程程若若 xxx解向量解向量向量方程向量方程 的解就是方程

41、组的解就是方程组 的解向量的解向量)4()3(()求齐次线性方程组的基础解系()求齐次线性方程组的基础解系:,)(21可可按按下下面面步步骤骤进进行行不不妨妨设设为为个个解解向向量量解解系系含含线线性性无无关关的的那那么么方方程程组组的的一一个个基基础础程程组组中中未未知知数数的的个个数数为为而而方方的的秩秩若若齐齐次次线线性性方方程程组组 rnrnnrAROAx 线性方程组的解法第一步:对系数矩阵进行初等行变换,使其第一步:对系数矩阵进行初等行变换,使其变成行最简形矩阵变成行最简形矩阵;0000000000100010001,1,21,2,11,1 ccccccnrrrnrnrA即即个个分分

42、量量的的第第于于是是得得号号个个分分量量反反列列前前将将第第第第二二步步,2,1,2,1:21rrnrrrn ;,2,11,2,22,121,1,21,11 cccccccccnrnnrnrrrrrrrr 第三步:将其余第三步:将其余 个分量依次组成个分量依次组成 阶阶单位矩阵,于是得齐次线性方程组的一个基础解系单位矩阵,于是得齐次线性方程组的一个基础解系.100,010,001,2,12,2,22,121,1,21,11 cccccccccnrnnrnrrrrrrrr rn rn()求非齐次线性方程组的特解()求非齐次线性方程组的特解.,)()(矩矩阵阵使使其其成成为为行行最最简简形形进进行

43、行初初等等行行变变换换增增广广矩矩阵阵那那么么对对数数为为而而方方程程组组中中未未知知数数的的个个的的秩秩若若非非齐齐次次线线性性方方程程组组BnrBRARbAx ,000000000000100010001,1,2,21,21,11,1 dccdccdccrnrrrnrnr将上述矩阵中最后一列的前将上述矩阵中最后一列的前 个分量依次作为个分量依次作为特解的第特解的第 个分量,其余个分量,其余 个分量全部取个分量全部取零,于是得零,于是得rrn r,2,1,0021 dddr 即为所求非齐次线性方程组的一个特解即为所求非齐次线性方程组的一个特解定义定义.,22112121的的内内积积与与称称为

44、为向向量量令令维维向向量量设设有有yxyxyxyxyxyxyyyyxxxxnnnnn 向量内积的定义及运算规律.,都是列向量都是列向量其中其中内积的矩阵表示内积的矩阵表示yxyxyxT.,)3(;,)2(;,)1(:),(zyzxzyxyxyxxyyxnzyx 为为实实数数量量维维向向为为其其中中内内积积满满足足下下列列运运算算规规律律定义定义).(,22221或范数或范数的长度的长度维向量维向量称为称为令令xnxxxxxxxn 向量的长度具有下列性质:向量的长度具有下列性质:.)3(;)2(;0,0;0,0)1(yxyxxxxxxx 三角不等式三角不等式齐次性齐次性时时当当时时当当非负性非负

45、性 向量的长度.,1为为单单位位向向量量称称时时当当xx ).0(,1,2时时当当从从而而有有不不等等式式向向量量的的内内积积满满足足施施瓦瓦茨茨 yxyxyxyyxxyx定义定义.,arccos ,0,0的的夹夹角角与与维维向向量量称称为为时时当当yxnyxyxyx .,0.,0,与任何向量都正交与任何向量都正交则则若若正交正交与与称向量称向量时时当当xxyxyx 向量的夹角所谓正交向量组,是指一组两两正交的非零所谓正交向量组,是指一组两两正交的非零向量向量空间的基若是正交向量组,就称为正向量向量空间的基若是正交向量组,就称为正交基交基定理定理.,2121线线性性无无关关则则零零向向量量是是

46、一一组组两两两两正正交交的的非非维维向向量量若若aaaaaanrr.,)(,212121的的一一个个规规范范正正交交基基是是则则称称两两两两正正交交如如果果的的一一个个基基是是向向量量空空间间维维向向量量设设VeeeeeeRVVeeenrrnr 定义定义正交向量组的性质).,2,1(,221121rieaaeeeeaaVVeeeiTiirrr 其其中中都都可可表表为为中中任任一一向向量量那那么么的的一一个个规规范范正正交交基基是是若若施密特正交化方法施密特正交化方法.,2121范范正正交交化化这这个个基基规规只只需需把把的的一一个个规规范范正正交交基基要要求求的的一一个个基基是是向向量量空空间

47、间设设aaaVVaaarr.,.,;,;2121111122221111111212211等价等价且与且与两两正交两两正交则则取取aaabbbbbbabbbbabbbbababbbbabababrrrrrrrrrrr 第一步正交化第一步正交化第二步单位化第二步单位化.,1,1,1222111的的一一个个规规范范正正交交基基就就得得取取Vbbebbebberrr 定义定义.),(1为为正正交交矩矩阵阵那那么么称称即即满满足足阶阶矩矩阵阵如如果果AAAEAAAnTT .)(的的一一个个规规范范正正交交基基向向量量构构成成向向量量空空间间行行个个列列的的正正交交矩矩阵阵RnAn正交矩阵与正交变换方阵

48、为正交矩阵的充分必要条件是的行方阵为正交矩阵的充分必要条件是的行(列)向量都是单位向量,且两两正交(列)向量都是单位向量,且两两正交AA定义定义若为正交矩阵,则线性变换称为若为正交矩阵,则线性变换称为正交变换正交变换正交变换的特性在于保持线段的长度不变正交变换的特性在于保持线段的长度不变.,xxxpxPxyyyPxyTTTT 则则有有为为正正交交变变换换设设PPxy 定义定义.,的特征向量的特征向量的对应于特征值的对应于特征值称为称为量量非零向非零向的特征值的特征值称为方阵称为方阵这样的数这样的数那么那么成立成立使关系式使关系式维非零列向量维非零列向量和和如果数如果数阶矩阵阶矩阵是是设设 Ax

49、AxAxxnnA.)(.0的特征多项式的特征多项式称为方阵称为方阵的特征方程的特征方程称为方阵称为方阵AEAfAEA 方阵的特征值和特征向量.)2(;)1(,)(.2122112121AaaaaAnAnnnnnnij 则有则有的特征值为的特征值为若若个特征值个特征值有有阶方阵阶方阵.1;1,)3(.)(,)(.)()();()2(;)1(,)(11010特征值特征值的的是是的特征值的特征值是是可逆时可逆时当当其中其中的特征值的特征值是是为任意自然数为任意自然数的特征值的特征值是是的特征值的特征值也是也是则则的特征值的特征值是是设设AAAAAaAaEaAaaaAkAAaAmmmmkkTijnn

50、有关特征值的一些结论定理定理.,21212121征征向向量量是是线线性性无无关关的的即即属属于于不不同同特特征征值值的的特特线线性性无无关关则则各各不不相相等等如如果果向向量量依依次次是是与与之之对对应应的的特特征征个个特特征征值值的的是是方方阵阵设设ppppppmAmmmm 定理定理 属于同一个特征值的特征向量的非零线性属于同一个特征值的特征向量的非零线性组合仍是属于这个特征值的特征向量组合仍是属于这个特征值的特征向量有关特征向量的一些结论定义定义.,.,11的相似变换矩阵的相似变换矩阵变成变成称为把称为把可逆矩阵可逆矩阵进行相似变换进行相似变换称为对称为对进行运算进行运算对对相似相似与与或

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(线性代数知识点1至5章课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|