1、备战中考数学(平行四边形提高练习题)压轴题训练附答案解析一、平行四边形1在四边形中,对角线平分.(1)如图1,若,且,试探究边、与对角线的数量关系并说明理由.(2)如图2,若将(1)中的条件“”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若,探究边、与对角线的数量关系并说明理由.【答案】(1).证明见解析;(2)成立;(3).理由见解析.【解析】试题分析:(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立以C为顶点,AC为一边作ACE=60,ACE的另一边交AB延长线于点E,只要证明DACBEC即可解决问题;(3)结论:AD+ABAC
2、过点C作CEAC交AB的延长线于点E,只要证明ACE是等腰直角三角形,DACBEC即可解决问题;试题解析:解:(1)AC=AD+AB理由如下:如图1中,在四边形ABCD中,D+B=180,B=90,D=90,DAB=120,AC平分DAB,DAC=BAC=60,B=90,ABAC,同理ADACAC=AD+AB(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作ACE=60,ACE的另一边交AB延长线于点E,BAC=60,AEC为等边三角形,AC=AE=CE,D+ABC=180,DAB=120,DCB=60,DCA=BCE,D+ABC=180,ABC+EBC=180,D=CBE,CA=C
3、E,DACBEC,AD=BE,AC=AD+AB(3)结论:AD+ABAC理由如下:过点C作CEAC交AB的延长线于点E,D+B=180,DAB=90,DCB=90,ACE=90,DCA=BCE,又AC平分DAB,CAB=45,E=45AC=CE又D+ABC=180,D=CBE,CDACBE,AD=BE,AD+AB=AE在RtACE中,CAB=45,AE.2如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C,连接AC并延长交直线DE于点P,F是AC的中点,连接DF(1)求FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间
4、的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出ACC的面积最大值【答案】(1)45;(2)BP+DPAP,证明详见解析;(3)1【解析】【分析】(1)证明CDECDE和ADFCDF,可得FDPADC45;(2)作辅助线,构建全等三角形,证明BAPDAP(SAS),得BPDP,从而得PAP是等腰直角三角形,可得结论;(3)先作高线CG,确定ACC的面积中底边AC为定值2,根据高的大小确定面积的大小,当C在BD上时,CG最大,其ACC的面积最大,并求此时的面积【详解】(1)由对称得:CDCD,CDECDE,在正方形ABCD中,ADCD,ADC90,ADCD,F是AC的中点,DFA
5、C,ADFCDF,FDPFDC+EDCADC45;(2)结论:BP+DPAP,理由是:如图,作APAP交PD的延长线于P,PAP90,在正方形ABCD中,DABA,BAD90,DAPBAP,由(1)可知:FDP45DFP90APD45,P45,APAP,在BAP和DAP中,BAPDAP(SAS),BPDP,DP+BPPPAP;(3)如图,过C作CGAC于G,则SACCACCG,RtABC中,ABBC,AC,即AC为定值,当CG最大值,ACC的面积最大,连接BD,交AC于O,当C在BD上时,CG最大,此时G与O重合,CDCD,ODAC1,CG1,SACC【点睛】本题考查四边形综合题、正方形的性质
6、、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题3已知:在菱形ABCD中,E,F是BD上的两点,且AECF求证:四边形AECF是菱形【答案】见解析【解析】【分析】由菱形的性质可得ABCD,ABCD,ADFCDF,由“SAS”可证ADFCDF,可得AFCF,由ABECDF,可得AECF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形【详解】证明:四边形ABCD是菱形ABCD,ABCD,ADFCDF,ABCD,ADFCDF,DFDFADFCDF(SAS)AFCF,ABCD,AECFABECDF,AEFCFEAEBCFD,AB
7、ECDF,ABCDABECDF(AAS)AECF,且AECF四边形AECF是平行四边形又AFCF,四边形AECF是菱形【点睛】本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.4如图,在RtABC中,B=90,AC=60cm,A=60,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动设点D、E运动的时间是t秒(0t15)过点D作DFBC于点F,连接DE,EF(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,
8、说明理由;(3)当t为何值时,DEF为直角三角形?请说明理由【答案】(1)见解析;(2)能,t=10;(3)t=或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)DEF为直角三角形,分EDF=90和DEF=90两种情况讨论.【详解】解:(1)证明:在RtABC中,C=90A=30,AB=AC=60=30cm,CD=4t,AE=2t,又在RtCDF中,C=30,DF=CD=2t,DF=AE;(2)能,DFAB,DF=
9、AE,四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即604t=2t,解得:t=10,当t=10时,AEFD是菱形;(3)若DEF为直角三角形,有两种情况:如图1,EDF=90,DEBC,则AD=2AE,即604t=22t,解得:t=,如图2,DEF=90,DEAC,则AE=2AD,即,解得:t=12,综上所述,当t=或12时,DEF为直角三角形.5在正方形ABCD中,点E,F分别在边BC,CD上,且EAF=CEF=45.(1)将ADF绕着点A顺时针旋转90,得到ABG(如图),求证:AEGAEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图),求证:EF2=
10、ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,EAF=GAE=45,故可证AEGAEF;(2)将ADF绕着点A顺时针旋转90,得到ABG,连结GM由(1)知AEGAEF,则EG=EF再由BME、DNF、CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明GME=90,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)
11、将ADF绕着点A顺时针旋转90,得到ABG,根据旋转的性质可以得到ADFABG,则DF=BG,再证明AEGAEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF试题解析:(1)ADF绕着点A顺时针旋转90,得到ABG,AF=AG,FAG=90,EAF=45,GAE=45,在AGE与AFE中,AGEAFE(SAS);(2)设正方形ABCD的边长为a将ADF绕着点A顺时针旋转90,得到ABG,连结GM则ADFABG,DF=BG由(1)知AEGAEF,EG=EFCEF=45,BME、DNF、CEF均为等腰直角三角形,CE=CF,BE=BM,NF=DF,aBE=aDF,BE=DF,B
12、E=BM=DF=BG,BMG=45,GME=45+45=90,EG2=ME2+MG2,EG=EF,MG=BM=DF=NF,EF2=ME2+NF2;(3)EF2=2BE2+2DF2如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将ADF绕着点A顺时针旋转90,得到AGH,连结HM,HE由(1)知AEHAEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BMGM)2=EH2又EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BEGH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题6如图,在菱形ABCD中,AB=4,BAD=120,
13、AEF为正三角形,E、F在菱形的边BC,CD上(1)证明:BE=CF(2)当点E,F分别在边BC,CD上移动时(AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值(3)在(2)的情况下,请探究CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值【答案】(1)见解析;(2);(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证ABC、ACD为等边三角形,得4=60,AC=AB进而求证ABEACF,即可求得BE=CF;(2)根据ABEACF可得SABE=SACF,故根据S四边形AECF=SAEC+SACF=SAE
14、C+SABE=SABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据SCEF=S四边形AECF-SAEF,则CEF的面积就会最大.试题解析:(1)证明:连接AC,1+2=60,3+2=60,1=3,BAD=120,ABC=ADC=60四边形ABCD是菱形,AB=BC=CD=AD,ABC、ACD为等边三角形4=60,AC=AB,在ABE和ACF中,ABEACF(ASA)BE=CF(2)解:由(1)得ABEACF,则SABE=SACF故S四边形AECF=SAEC+SACF=SAEC+SABE=S
15、ABC,是定值作AHBC于H点,则BH=2,S四边形AECF=SABC=;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短故AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又SCEF=S四边形AECFSAEF,则CEF的面积就会最大由(2)得,SCEF=S四边形AECFSAEF=点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证ABEACF是解题的关键7如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线A
16、B:yx+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EFx轴交直线AB于点F,以EF为一边向右作正方形EFGH(1)求边EF的长;(2)将正方形EFGH沿射线FB的方向以每秒个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t0)当点F1移动到点B时,求t的值;当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与APE重叠部分的面积【答案】(1)EF15;(2)10;120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-x+40,可求出P点坐标
17、,进而求出F点坐标即可;(2)易求B(0,5),当点F1移动到点B时,t=10=10;F点移动到F的距离是t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在RtFNF中,=,EM=NG=15-FN=15-3t,在RtDMH中,t=4,S=(12+)11=;当点G运动到直线DE上时,在RtFPK中,=,PK=t-3,FK=3t-9,在RtPKG中,t=7,S=15(15-7)=120.【详解】(1)设直线DE的直线解析式ykx+b,将点E(30,0),点D(0,40),yx+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),EF15;(2)易求B(0,5),B
18、F10,当点F1移动到点B时,t1010;当点H运动到直线DE上时,F点移动到F的距离是t,在RtFNF中,=,FNt,FN3t,MHFNt,EMNG15FN153t,在RtDMH中,t4,EM3,MH4,S;当点G运动到直线DE上时,F点移动到F的距离是t,PF3,PFt3,在RtFPK中,PKt3,FK3t9,在RtPKG中,t7,S15(157)120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键8现有一张矩形纸片ABCD(如图),其中AB4cm,
19、BC6cm,点E是BC的中点将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B,过E作EF垂直BC,交BC于F(1)求AE、EF的位置关系;(2)求线段BC的长,并求BEC的面积【答案】(1)见解析;(2)SBEC【解析】【分析】(1)由折线法及点E是BC的中点,可证得BEC是等腰三角形,再有条件证明AEF=90即可得到AEEF;(2)连接BB,通过折叠,可知EBB=EBB,由E是BC的中点,可得EB=EC,ECB=EBC,从而可证BBC为直角三角形,在RtAOB和RtBOE中,可将OB,BB的长求出,在RtBBC中,根据勾股定理可将BC的值求出.【详解】(1)由折线法及点E是BC的中点
20、,EBEBEC,AEBAEB,BEC是等腰三角形,又EFBCEF为BEC的角平分线,即BEFFEC,AEF180(AEB+CEF)90,即AEF90,即AEEF;(2)连接BB交AE于点O,由折线法及点E是BC的中点,EBEBEC,EBBEBB,ECBEBC;又BBC三内角之和为180,BBC90;点B是点B关于直线AE的对称点,AE垂直平分BB;在RtAOB和RtBOE中,BO2AB2AO2BE2(AEAO)2将AB4cm,BE3cm,AE5cm,AO cm,BOcm,BB2BOcm,在RtBBC中,BCcm,由题意可知四边形OEFB是矩形,EFOB,SBEC【点睛】考查图形的折叠变化及三角
21、形的内角和定理勾股定理的和矩形的性质综合运用关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化9在中,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF求证:;求证:四边形BDFG为菱形;若,求四边形BDFG的周长【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,设,则,利用菱形的性质和勾股定理得到CF、AF
22、和AC之间的关系,解出x即可【详解】证明:,又为AC的中点,又,证明:,四边形BDFG为平行四边形,又,四边形BDFG为菱形,解:设,则,在中,解得:,舍去,菱形BDFG的周长为8【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键10在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF(1)说明BEF是等腰三角形;(2)求折痕EF的长【答案】(1)见解析;(2).【解析】【分析】(1)根据折叠得出DEF=BEF,根据矩形的性质得出ADBC,求出DEF=BFE,求出BEF=B
23、FE即可;(2)过E作EMBC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在RtEMF中,由勾股定理求出即可【详解】(1)现将纸片折叠,使点D与点B重合,折痕为EF,DEF=BEF四边形ABCD是矩形,ADBC,DEF=BFE,BEF=BFE,BE=BF,即BEF是等腰三角形;(2)过E作EMBC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM现将纸片折叠,使点D与点B重合,折痕为EF,DE=BE,DO=BO,BDEF四边形ABCD是矩形,BC=8,AD=BC=8,BAD=90在RtABE中,AE2+AB
24、2=BE2,即(8BE)2+62=BE2,解得:BE=DE=BF,AE=8DE=8=BM,FM=在RtEMF中,由勾股定理得:EF=故答案为:【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键11(1)问题发现:如图,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;(2)深入探究:如图,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使ABC=AMN,AM=MN,连接CN,试探究ABC与ACN的数量关系,并说明理由;(3)拓展延伸:如图
25、,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长【答案】(1)NCAB;理由见解析;(2)ABC=ACN;理由见解析;(3);【解析】分析:(1)根据ABC,AMN为等边三角形,得到AB=AC,AM=AN且BAC=MAN=60从而得到BAC-CAM=MAN-CAM,即BAM=CAN,证明BAMCAN,即可得到BM=CN(2)根据ABC,AMN为等腰三角形,得到AB:BC=1:1且ABC=AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到BAC=MAN,根据相似三角形的性
26、质即可得到结论;(3)如图3,连接AB,AN,根据正方形的性质得到ABC=BAC=45,MAN=45,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案详解:(1)NCAB,理由如下:ABC与MN是等边三角形,AB=AC,AM=AN,BAC=MAN=60,BAM=CAN,在ABM与ACN中, ,ABMACN(SAS),B=ACN=60,ANC+ACN+CAN=ANC+60+CAN=180,ANC+MAN+BAM=ANC+60+CAN=BAN+ANC=180,CNAB; (2)ABC=ACN,理由如下:=1且ABC=AMN,ABCAMN,AB=BC,BAC=(180AB
27、C),AM=MNMAN=(180AMN),ABC=AMN,BAC=MAN,BAM=CAN,ABMACN,ABC=ACN;(3)如图3,连接AB,AN,四边形ADBC,AMEF为正方形,ABC=BAC=45,MAN=45,BACMAC=MANMAC即BAM=CAN,ABMACN,=cos45=,BM=2,CM=BCBM=8,在RtAMC,AM=,EF=AM=2点睛:本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键12如图,AB为O
28、的直径,点E在O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交O于点F,交切线于点C,连接AC(1)求证:AC是O的切线;(2)连接EF,当D=时,四边形FOBE是菱形【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出,根据圆的位置关系证得AC是O的切线.(2)根据四边形FOBE是菱形,得到OF=OB=BF=EF,得证为等边三角形,而得出,根据三角形内角和即可求出答案.【详解】(1)证明:CD与O相切于点E,又,OBE=COAOE=OB,又OC=OC,OA=OE,又AB为O的直径,AC为O的切线;(2)解:四边形FOBE是菱形,OF=OB=B
29、F=EF,OE=OB=BE,为等边三角形,而,故答案为30【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.13已知:在矩形ABCD中,AB10,BC12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE2(1)如图,当四边形EFGH为正方形时,求GFC的面积;(2)如图,当四边形EFGH为菱形,且BFa时,求GFC的面积(用a表示);(3)在(2)的条件下,GFC的面积能否等于2?请说明理由【答案】(1)10;(2)12a;(3)不能【解析】解:(1)过点G作GMBC于M在正方形EFGH中,HEF90,EHEF,AEHBE
30、F90AEHAHE90,AHEBEF又AB90,AHEBEF同理可证MFGBEFGMBFAE2FCBCBF10(2)过点G作GMBC交BC的延长线于M,连接HFADBC,AHFMFHEHFG,EHFGFHAHEMFG又AGMF90,EHGF,AHEMFGGMAE2(3)GFC的面积不能等于2说明一:若SGFC2,则12a2,a10此时,在BEF中,在AHE中,AHAD,即点H已经不在边AD上,故不可能有SGFC2说明二:GFC的面积不能等于2点H在AD上,菱形边EH的最大值为,BF的最大值为又函数SGFC12a的值随着a的增大而减小,SGFC的最小值为又,GFC的面积不能等于214如图,在平面
31、直角坐标系xOy中,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO的中点,连结DE、EF、FG、GD(1)若点C在y轴的正半轴上,当点B的坐标为(2,4)时,判断四边形DEFG的形状,并说明理由.(2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度的取值范围.(3)若在点C的运动过程中,四边形DEFG始终为正方形,当点C从X轴负半轴经过Y轴正半轴,运动至X轴正半轴时,直接写出点B的运动路径长.【答案】(1)正方形(2)(3)2【解析】分析:(1)连接OB,AC,说明OBAC,OB=AC,可得四边形DE
32、FG是正方形.(2)由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, 故可得结论;(3)根据题意计算弧长即可.详解:(1)正方形,如图1,证明连接OB,AC,说明OBAC,OB=AC,可得四边形DEFG是正方形.(2)如图2,由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, ;(3)2.如图3,当四边形DEFG是正方形时,OBAC,且OB=AC,构造OBEACO,可得B点在以E(0,4)为圆心,2为半径的圆上运动.所以当C点从x轴负半轴到正半轴运动时,B点的运动路径为2 .图1 图2 图3点睛:本题主要
33、考查了正方形的判定,菱形的性质以及弧长的计算.灵活运用正方形的判定定理和菱形的性质运用是解题的关键.15已知边长为1的正方形ABCD中, P是对角线AC上的一个动点(与点A、C不重合),过点P作PEPB ,PE交射线DC于点E,过点E作EFAC,垂足为点F(1)当点E落在线段CD上时(如图),求证:PB=PE;在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;(2)当点E落在线段DC的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);(3)在点P的运动过程中,PEC能否为等腰三角形?如果能,
34、试求出AP的长,如果不能,试说明理由【答案】(1)证明见解析;点PP在运动过程中,PF的长度不变,值为;(2)画图见解析,成立 ;(3)能,1.【解析】分析:(1)过点P作PGBC于G,过点P作PHDC于H,如图1要证PB=PE,只需证到PGBPHE即可;连接BD,如图2易证BOPPFE,则有BO=PF,只需求出BO的长即可(2)根据条件即可画出符合要求的图形,同理可得(1)中的结论仍然成立(3)可分点E在线段DC上和点E在线段DC的延长线上两种情况讨论,通过计算就可求出符合要求的AP的长详解:(1)证明:过点P作PGBC于G,过点P作PHDC于H,如图1四边形ABCD是正方形,PGBC,PH
35、DC,GPC=ACB=ACD=HPC=45PG=PH,GPH=PGB=PHE=90PEPB即BPE=90,BPG=90GPE=EPH在PGB和PHE中,PGBPHE(ASA),PB=PE连接BD,如图2四边形ABCD是正方形,BOP=90PEPB即BPE=90,PBO=90BPO=EPFEFPC即PFE=90,BOP=PFE在BOP和PFE中, BOPPFE(AAS),BO=PF四边形ABCD是正方形,OB=OC,BOC=90,BC=OBBC=1,OB=,PF=点PP在运动过程中,PF的长度不变,值为(2)当点E落在线段DC的延长线上时,符合要求的图形如图3所示同理可得:PB=PE,PF=(3
36、)若点E在线段DC上,如图1BPE=BCE=90,PBC+PEC=180PBC90,PEC90若PEC为等腰三角形,则EP=ECEPC=ECP=45,PEC=90,与PEC90矛盾,当点E在线段DC上时,PEC不可能是等腰三角形若点E在线段DC的延长线上,如图4若PEC是等腰三角形,PCE=135,CP=CE,CPE=CEP=22.5APB=1809022.5=67.5PRC=90+PBR=90+CER,PBR=CER=22.5,ABP=67.5,ABP=APBAP=AB=1AP的长为1点睛:本题主要考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、角平分线的性质、勾股定理、四边形的内角和定理、三角形的内角和定理及外角性质等知识,有一定的综合性,而通过添加辅助线证明三角形全等是解决本题的关键