高中数学-高考双曲线(DOC 8页).doc

上传人(卖家):2023DOC 文档编号:5698663 上传时间:2023-05-04 格式:DOC 页数:9 大小:306.50KB
下载 相关 举报
高中数学-高考双曲线(DOC 8页).doc_第1页
第1页 / 共9页
高中数学-高考双曲线(DOC 8页).doc_第2页
第2页 / 共9页
高中数学-高考双曲线(DOC 8页).doc_第3页
第3页 / 共9页
高中数学-高考双曲线(DOC 8页).doc_第4页
第4页 / 共9页
高中数学-高考双曲线(DOC 8页).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、三、典型例题选讲(一)考查双曲线的概念例1 设P是双曲线上一点,双曲线的一条渐近线方程为,、分别是双曲线的左、右焦点若,则( )A或 B6 C7 D9分析:根据标准方程写出渐近线方程,两个方程对比求出的值,利用双曲线的定义求出的值解:双曲线渐近线方程为y=,由已知渐近线为,.,.故选C归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法(二)基本量求解例2(2009山东理)设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为( )A B5 C D解析:双曲线的一条渐近线为,由方程组,消去y,得有唯一解,所以=,所以,故选D归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,

2、以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解本题较好地考查了基本概念、基本方法和基本技能例3(2009全国理)设双曲线(a0,b0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( )A. B.2 C. D.解析:设切点,则切线的斜率为由题意有又有,联立两式解得:因此选C例4(2009江西)设和为双曲线()的两个焦点,若,是正三角形的三个顶点,则双曲线的离心率为( )A B C D3解析:由有,则,故选B归纳小结:注意等边三角形及双曲线的几何特征,从而得出,体现数形结合思想的应用(三)求曲线的方程例5(2009,北京)已知双曲线的离心率为,右准线方程为(1)求双曲

3、线C的方程;(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值分析:(1)由已知条件列出的关系,求出双曲线C的方程;(2)将直线与双曲线方程联立,再由中点坐标公式及点在圆上求出m的值解:(1)由题意,得,解得.,所求双曲线的方程为(2)设A、B两点的坐标分别为,线段AB的中点为,由得(判别式),点在圆上,另解:设A、B两点的坐标分别为,线段AB的中点为,由,两式相减得.由直线的斜率为1,代入上式,得.又在圆上,得,又在直线上,可求得m的值.归纳小结:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力

4、例6 过的直线交双曲线于两点,若为弦的中点,求直线的方程分析:求过定点的直线方程,只需要求出它的斜率为此可设其斜率是,利用M为弦的中点,即可求得的值,由此写出直线的方程也可设出弦的两端点坐标用“点差法”求解解法一:显然直线不垂直于轴,设其斜率是,则方程为由消去得 设,由于M为弦的中点,所以,所以显然,当时方程的判别式大于零.所以直线的方程为,即解法二:设,则得.又因为,所以若则,由得,则点都不在双曲线上,与题设矛盾,所以所以所以直线的方程为,即经检验直线符合题意,故所求直线为解法三:设(),由于关于点M(1,1)对称,所以的坐标为(),则消去平方项,得 即点的坐标满足方程,同理点的坐标也满足方

5、程故直线的方程为归纳总结:由于双曲线(抛物线)不是“封闭”的曲线,以定点为中点的弦不一定存在,所以在求双曲线(抛物线)中点弦方程时,必须判断满足条件的直线是否存在(四)轨迹问题例7 已知点为双曲线(为正常数)上任一点,为双曲线的右焦点,过作右准线的垂线,垂足为,连接并延长交轴于求线段的中点的轨迹的方程分析:求轨迹问题有多种方法,如相关点法等,本题注意到点是线段的中点,可利用相关点法解:由已知得,则直线的方程为:令得,即设,则,即代入得:,即的轨迹的方程为归纳小结:将几何特征转化为代数关系是解析几何常用方法(五)突出几何性质的考查例8(2006江西)是双曲线的右支上一点,分别是圆和上的点,则的最

6、大值为( )A.6 B.7 C.8 D.9解析:双曲线的两个焦点与恰好是两圆的圆心,欲使的值最大,当且仅当最大且最小,由平面几何性质知,点在线段的延长线上,点是线段与圆的交点时所求的值最大.此时因此选D例9(2009重庆)已知以原点为中心的双曲线的一条准线方程为,离心率(1)求该双曲线的方程;(2)如图,点的坐标为,是圆上的点,点在双曲线右支上,求的最小值,并求此时点的坐标.分析:(1)比较基础,利用所给条件可求得双曲线的方程;(2)利用双曲线的定义将转化为其它线段,再利用不等式的性质求解解:(1)由题意可知,双曲线的焦点在轴上,故可设双曲线的方程为,设,由准线方程为得,由得解得.从而,该双曲线的方程为.(2)设点D的坐标为,则点A、D为双曲线的焦点,则.所以因为是圆上的点,其圆心为,半径为1,故,从而当在线段CD上时取等号,此时的最小值为直线CD的方程为,因点M在双曲线右支上,故由方程组解得所以点的坐标为归纳小结:本题综合考查双曲线的知识及不等式性质,考查推理能力及数形结合思想9

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 各科综合
版权提示 | 免责声明

1,本文(高中数学-高考双曲线(DOC 8页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|